10:00
10:00
17:30
Mixed Hodge structures of parabolic character varieties via geometric methods
16:00
From Sturm, Sylvester, Witt and Wall to the present day
Abstract
The talk will be based on some of the material in the joint survey with Etienne Ghys
"Signatures in algebra, topology and dynamics"
http://arxiv.org/abs/1512.092582
In the 19th century Sturm's theorem on the number of roots of a real polynomial motivated Sylvester to define the signature of a quadratic form. In the 20th century the classification of quadratic forms over algebraic number fields motivated Witt to introduce the "Witt groups" of stable isomorphism classes of quadratic forms over arbitrary fields. Still in the 20th century the study of high-dimensional topological manifolds with nontrivial fundamental group motivated Wall to introduce the "Wall groups" of stable isomorphism classes of quadratic forms over arbitrary rings with involution. In our survey we interpreted Sturm's theorem in terms of the Witt-Wall groups of function fields. The talk will emphasize the common thread running through this developments, namely the notion of the localization of a ring inverting elements. More recently, the Cohn localization of inverting matrices over a noncommutative ring has been applied to topology in the 21st century, in the context of the speaker's algebraic theory of surgery.
Branching diffusion representation of semilinear PDEs and Monte Carlo approximation
Abstract
We provide a representation result of parabolic semi-linear PDEs, with polynomial nonlinearity, by branching diffusion processes. We extend the classical representation for KPP equations, introduced by Skorokhod (1964), Watanabe (1965) and McKean (1975), by allowing for polynomial nonlinearity in the pair (u,Du), where u is the solution of the PDE with space gradient Du. Similar to the previous literature, our result requires a non-explosion condition which restrict to "small maturity" or "small nonlinearity" of the PDE. Our main ingredient is the automatic differentiation technique as in Henry Labordere, Tan and Touzi (2015), based on the Malliavin integration by parts, which allows to account for the nonlinearities in the gradient. As a consequence, the particles of our branching diffusion are marked by the nature of the nonlinearity. This new representation has very important numerical implications as it is suitable for Monte Carlo simulation.
Mathematics and Molecular Biology: The Engineering Approach
Abstract
Life is different because it is inherited. All life comes from a blueprint (genes) that can only make proteins. Proteins are studied by more than one hundred thousand scientists and physicians every day because they are so important in health and disease. The function of proteins is on the macroscopic scale, but atomic details control that function, as is shown in a multitude of experiments. The structure of proteins is so important that governments spend billions studying them. Structures are known in exquisite detail determined by crystallographic measurement of more than 105 different proteins. But the forces that govern the movement and function of proteins are not visible in the structure. Mathematics is needed to compute both function and forces so comparison with experiment can be made. Experiments report numbers, typically sets of numbers in the form of graphs. Verbal models, however beautifully written in the biological tradition, do not provide numerical outputs, and so it is difficult to tell which verbal model better fits data.
The mathematics of molecular biology must be multiscale because atomic details control macroscopic function. The device approach of the engineering and English physiological tradition provides the dimensional reduction needed to solve the multiscale problem. Mathematical analysis of hundreds of experiments (reported in some fifty papers) has been successful in showing how some properties of an important class of proteins—ion channels— work. Ion channels are natural nanovalves as important to animals as Field Effect Transistors (FETs) are to computers. I will present the Fermi Poisson approach started by Jinn Liang Liu. The Fermi distribution is used to describe the saturation of space produced by crowded spherical ions. The Poisson equation (and continuity of current) is used to describe long range electrodynamics. Short range correlations are approximated by the Santangelo equation. A fully consistent mathematical description reproduces macroscopic properties of bulk solutions of sodium and calcium chloride solutions. It also describes several different channels (with quite different atomic detailed structures) quite well in a wide range of conditions using a handful of parameters never changed. It is not clear why the model works as well it does, nor is it clear how well the model will work on other channels, transporters or proteins.
Fast simplicial finite elements via Bernstein polynomials
Abstract
For many years, sum-factored algorithms for finite elements in rectangular reference geometry have combined low complexity with the mathematical power of high-order approximation. However, such algorithms rely heavily on the tensor product structure inherent in the geometry and basis functions, and similar algorithms for simplicial geometry have proven elusive.
Bernstein polynomials are totally nonnegative, rotationally symmetric, and geometrically decomposed bases with many other remarkable properties that lead to optimal-complexity algorithms for element wise finite element computations. The also form natural building blocks for the finite element exterior calculus bases for the de Rham complex so that H(div) and H(curl) bases have efficient representations as well. We will also their relevance for explicit discontinuous Galerkin methods, where the element mass matrix requires special attention.
11:00
"p-adica nova"
Abstract
This will be a little potpourri containing some of the recent developments on the model theory of F_p((t)) and of algebraic extensions of Q_p.
Random walks, harmonic functions and Poisson boundary
Abstract
in this talk I will try to introduce some key ideas and concepts about random walks on discrete spaces, with special interest on random walks on Cayley graphs.
16:00
A counterexample to the Ho-Zhao problem
Abstract
It is quite easy to see that the sobrification of a
topological space is a dcpo with respect to its specialisation order
and that the topology is contained in the Scott topology wrt this
order. It is also known that many classes of dcpo's are sober when
considered as topological spaces via their Scott topology. In 1982,
Peter Johnstone showed that, however, not every dcpo has this
property in a delightful short note entitled "Scott is not always
sober".
Weng Kin Ho and Dongsheng Zhao observed in the early 2000s that the
Scott topology of the sobrification of a dcpo is typically different
from the Scott topology of the original dcpo, and they wondered
whether there is a way to recover the original dcpo from its
sobrification. They showed that for large classes of dcpos this is
possible but were not able to establish it for all of them. The
question became known as the Ho-Zhao Problem. In a recent
collaboration, Ho, Xiaoyong Xi, and I were able to construct a
counterexample.
In this talk I want to present the positive results that we have about
the Ho-Zhao problem as well as our counterexample.
From maximal to minimal supersymmetry in string loop amplitudes
Abstract
I will summarize recent (arXiv:1603.05262) and upcoming work with Igor Buchberger and Oliver Schlotterer. We construct a map from n-point 1-loop string amplitudes in maximal supersymmetry to n-3-point 1-loop amplitudes in minimal supersymmetry. I will outline a few implications for the quantum string effective action.
Tadashi Tokieda - Toy Models
Abstract
Would you like to come see some toys?
'Toys' here have a special sense: objects of daily life which you can find or make in minutes, yet which, if played with imaginatively reveal surprises that keep scientists puzzling for a while. We will see table-top demos of many such toys and visit some of the science that they open up. The common theme is singularity.
Tadashi Tokieda is the Director of Studies in Mathematics at Trinity Hall, Cambridge and the Poincaré Professor in the Department of Mathematics, Stanford.
To book please email @email
14:30
Applications of minimum rank of matrices described by a graph or sign pattern
Abstract
Low-rank compression of matrices and tensors is a huge and growing business. Closely related is low-rank compression of multivariate functions, a technique used in Chebfun2 and Chebfun3. Not all functions can be compressed, so the question becomes, which ones? Here we focus on two kinds of functions for which compression is effective: those with some alignment with the coordinate axes, and those dominated by small regions of localized complexity.
Multiserial and Special Multiserial Algebras
Abstract
The class of multiserial algebras contains many well-studied examples of algebras such as the intensely-studied biserial and special biserial algebras. These, in turn, contain many of the tame algebras arising in the modular representation theory of finite groups such as tame blocks of finite groups and all tame blocks of Hecke algebras. However, unlike biserial algebras which are of tame representation type, multiserial algebras are generally of wild representation type. We will show that despite this fact, we retain some control over their representation theory.
14:00
Best L1 polynomial approximation
Abstract
An important observation in compressed sensing is the exact recovery of an l0 minimiser to an underdetermined linear system via the l1 minimiser, given the knowledge that a sparse solution vector exists. Here, we develop a continuous analogue of this observation and show that the best L1 and L0 polynomial approximants of a corrupted function (continuous analogue of sparse vectors) are equivalent. We use this to construct best L1 polynomial approximants of corrupted functions via linear programming. We also present a numerical algorithm for computing best L1 polynomial approximants to general continuous functions, and observe that compared with best L-infinity and L2 polynomial approximants, the best L1 approximants tend to have error functions that are more localized.
Joint work with Alex Townsend (MIT).
Extended QFT in Euclidean and Minkowskian signatures
Abstract
I'll explain the formalism of extended QFT, while
focusing on the cases of two dimensional conformal field theories,
and three dimensional topological field theories.
16:00
The decay of solutions of Maxwell-Klein-Gordon equations
Abstract
It has been shown that there are global solutions to
Maxwell-Klein-Gordon equations in Minkowski space with finite energy
data. However, very little is known about the asymptotic behavior of the
solution. In this talk, I will present recent progress on the decay
properties of the solutions. We show the quantitative energy flux decay
of the solutions with data merely bounded in some weighted energy space.
The results in particular hold in the presence of large total charge.
This is the first result that gives a complete and precise description
of the global behavior of large nonlinear fields.
Finiteness Properties and Free Abelian Subgroups
Abstract
Finiteness properties of groups come in many flavours, I will discuss topological finiteness properties. These relate to the finiteness of skelata in a classifying space. Groups with interesting finiteness properties have been found in many ways, however all such examples contains free abelian subgroups of high rank. I will discuss some constructions of groups discussing the various ways we can reduce the rank of a free abelian subgroup.
14:15
K-contact & Sasakian manifolds of dimension 5
Abstract
Sasakian manifolds are odd-dimensional counterparts of Kahler manifolds in even dimensions,
with K-contact manifolds corresponding to symplectic manifolds. It is an interesting problem to find
obstructions for a closed manifold to admit such types of structures and in particular, to construct
K-contact manifolds which do not admit Sasakian structures. In the simply-connected case, the
hardest dimension is 5, where Kollar has found subtle obstructions to the existence of Sasakian
structures, associated to the theory of algebraic surfaces.
In this talk, we develop methods to distinguish K-contact manifolds from Sasakian ones in
dimension 5. In particular, we find the first example of a closed 5-manifold with first Betti number 0 which is K-contact but which carries no semi-regular Sasakian structure.
(Joint work with J.A. Rojo and A. Tralle).
Yang-Mills Theory and the ABC Conjecture
Abstract
We establish a correspondence between the ABC Conjecture and N=4 super-Yang-Mills theory. This is achieved by combining three ingredients:
(i) Elkies' method of mapping ABC-triples to elliptic curves in his demonstration that ABC implies Mordell/Faltings;
(ii) an explicit pair of elliptic curve and associated Belyi map given by Khadjavi-Scharaschkin; and
(iii) the fact that the bipartite brane-tiling/dimer model for a gauge theory with toric moduli space is a particular dessin d'enfant in the sense of Grothendieck.
We explore this correspondence for the highest quality ABC-triples as well as large samples of random triples. The Conjecture itself is mapped to a statement about the fundamental domain of the toroidal compactification of the string realization of N=4 SYM.
Journals and metrics
Abstract
What is the purpose of journals? How should you choose what journal to submit a paper to? Should it be open access? And how would you like your work to be evaluated?
Cutting and pasting in algebraic geometry
Abstract
Given some class of "geometric spaces", we can make a ring as follows. Additive structure: when U is an open subset a space X, [X] = [U] + [X - U]. Multiplicative structure: [X][Y] = [XxY]. In the algebraic setting, this ring (the "Grothendieck ring of varieties") contains surprising structure, connecting geometry to arithmetic and topology. I will discuss some remarkable
statements about this ring (both known and conjectural), and present new statements (again, both known and conjectural). A motivating example will be polynomials in one variable. This is joint work with Melanie Matchett Wood.
A non-linear gauge transformation towards the BCJ duality
Abstract
In this talk, a concrete realization of the Bern-Carrasco-Johansson (BCJ) duality between color and kinematics in non-abelian gauge theories is presented. The method of Berends-Giele to package Feynman diagrams into currents is shown to yield classical solutions to the non-linear Yang-Mills equations. We describe a non-linear gauge transformation of these perturbiner solutions which reorganize the cubic-diagram content such that the kinematic dependence obeys the same Jacobi identities as the accompanying color factors. The resulting tree-level subdiagrams are assembled to kinematic numerators of tree-level and one-loop amplitudes which satisfy the BCJ duality.
Loop Groups, K-theory and Noncommutative Geometry
Abstract
We describe the representation theory of loop groups in
terms of K-theory and noncommutative geometry. For any simply
connected compact Lie group G and any positive integer level l we
consider a natural noncommutative universal algebra whose 0th K-group
can be identified with abelian group generated by the level l
positive-energy representations of the loop group LG.
Moreover, for any of these representations, we define a spectral
triple in the sense of A. Connes and compute the corresponding index
pairing with K-theory. As a result, these spectral triples give rise
to a complete noncommutative geometric invariant for the
representation theory of LG at fixed level l. The construction is
based on the supersymmetric conformal field theory models associated
with LG and it can be generalized, in the setting of conformal nets,
to many other rational chiral conformal field theory models including
loop groups model associated to non-simply connected compact Lie
groups, coset models and the moonshine conformal field theory. (Based
on a joint work with Robin Hillier)
Andrea Bertozzi - The Mathematics of Crime
Abstract
To book please email @email
Pee, Poo, and the Gut
Abstract
Fluids and solids leave our bodies everyday. How do animals do it, from mice to elephants? In this talk, I will show how the shape of urinary and digestive organs enable them to function, regardless of the size of the animal. Such ideas may teach us how to more efficiently transport materials. I will show how the pee-pee pipe enables animals to urinate in constant time, how slippery mucus is critical for defecation, and how the motion of the gut is related to the density of its contents, and in turn to the gut’s natural frequency.
More info is in the BBC news here: http://www.bbc.com/news/science-environment-34278595
Oxford Cryptography Day
Abstract
We hope to bring together all Oxford researchers interested in Cryptography, in Quantum Computing and in the interactions between the two.
Please register at: http://oxford-cryptography-day.eventbrite.co.uk
14:15
Mathematical Modelling of Melt Lake Formation On An Ice Shelf
Abstract
The accumulation of surface meltwater on ice shelves can lead to the formation of melt lakes. These structures have been implicated in crevasse propagation and ice-shelf collapse; the Larsen B ice shelf was observed to have a large amount of melt lakes present on its surface just before its collapse in 2002. Through modelling the transport of heat through the surface of the Larsen C ice shelf, where melt lakes have also been observed, this work aims to provide new insights into the ways in which melt lakes are forming and the effect that meltwater filling crevasses on the ice shelf will have. This will enable an assessment of the role of meltwater in triggering ice-shelf collapse. The Antarctic Peninsula, where Larsen C is situated, has warmed several times the global average over the last century and this ice shelf has been suggested as a candidate for becoming fully saturated with meltwater by the end of the current century. Here we present results of a 1-D mathematical model of heat transfer through an idealized ice shelf. When forced with automatic weather station data from Larsen C, surface melting and the subsequent meltwater accumulation, melt lake development and refreezing are demonstrated through the modelled results. Furthermore, the effect of lateral meltwater transport upon melt lakes and the effect of the lakes upon the surface energy balance are examined. Investigating the role of meltwater in ice-shelf stability is key as collapse can affect ocean circulation and temperature, and cause a loss of habitat. Additionally, it can cause a loss of the buttressing effect that ice shelves can have on their tributary glaciers, thus allowing the glaciers to accelerate, contributing to sea-level rise.
Alan Turing and fibonacci phyllotaxis
Variance of partial sums of stationary processes
Abstract
We give necessary and sufficient conditions for the variance of the partial sums of stationary processes to be regularly varying in terms of the spectral measure associated with the shift operator. In the case of reversible Markov chains, or with normal transition operator we also give necessary and sufficient conditions in terms of the spectral measure of the transition operator. The two spectral measures are then linked through the use of harmonic measure. This is joint work with S. Utev(University of Leicester, UK) and M. Peligrad (University of Cincinnati, USA).
On the birational invariance of the BCOV torsion of Calabi-Yau threefold (joint with V. Maillot)
Abstract
Fang, Lu and Yoshikawa conjectured a few years ago that a certain string-theoretic invariant (originally introduced by the physicists M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa) of Calabi-Yau threefolds is a birational invariant. This conjecture can be viewed as a "secondary" analog (in dimension three) of the birational invariance of Hodge numbers of Calabi-Yau varieties established by Batyrev and Kontsevich. Using the arithmetic Riemann-Roch theorem, we prove a weak form of this conjecture.
Quasi-Abelian Categories in Analytic Geometry
Abstract
In this talk I will give several perspectives on the role of
quasi-abelian categories in analytic geometry. In particular, I will
explain why a certain completion of the category of Banach spaces is a
convenient setting for studying sheaves of topological vector spaces on
complex manifolds. Time permitting, I will also argue why this category
may be a good candidate for a functor of points approach to (derived)
analytic geometry.
On the number of nodal domains of toral eigenfunctions
Abstract
We study the number of nodal domains of toral Laplace eigenfunctions. Following Nazarov-Sodin's results for random fields and Bourgain's de-randomisation procedure we establish a precise asymptotic result for "generic" eigenfunctions. Our main results in particular imply an optimal lower bound for the number of nodal domains of generic toral eigenfunctions.
The eigenvalues and eigenvectors of the sample covariance matrix of heavy-tailed multivariate time series
Abstract
This is joint work with Richard A. Davis (Columbia Statistics) and Johannes Heiny (Copenhagen). In recent years the sample covariance matrix of high-dimensional vectors with iid entries has attracted a lot of attention. A deep theory exists if the entries of the vectors are iid light-tailed; the Tracy-Widom distribution typically appears as weak limit of the largest eigenvalue of the sample covariance matrix. In the heavy-tailed case (assuming infinite 4th moments) the situation changes dramatically. Work by Soshnikov, Auffinger, Ben Arous and Peche shows that the largest eigenvalues are approximated by the points of a suitable nonhomogeneous Poisson process. We follows this line of research. First, we consider a p-dimensional time series with iid heavy-tailed entries where p is any power of the sample size n. The point process of the scaled eigenvalues of the sample covariance matrix converges weakly to a Poisson process. Next, we consider p-dimensional heavy-tailed time series with dependence through time and across the rows. In particular, we consider entries with a linear dependence or a stochastic volatility structure. In this case, the limiting point process is typically a Poisson cluster process. We discuss the suitability of the aforementioned models for large portfolios of return series.
Dynamic homogenisation
Abstract
The aim of this talk is to describe effective media for wave propagation through periodic, or nearly periodic, composites. Homogenisation methods are well-known and developed for quasi-static and low frequency regimes. The aim here is to move to situations of more practical interest where the frequencies are high, in some sense, and to compare the results of the theory with large scale simulations.
Modelling, analysis, and (some) numerics for cardiac electromechanics
12:00
Sharp decay estimates for waves on black holes and Price's law
Abstract
11:00
Manifolds with odd Euler characteristic
Abstract
Orientable manifolds can only have an odd Euler characteristic in dimensions divisible by 4. I will prove the analogous result for spin and string manifolds, where the dimension can only be a multiple of 8 and 16 respectively. The talk will require very little background. I'll go over the definition of spin and string structures, discuss cohomology operations and Poincare duality.
16:00
Normal spanning trees in uncountable graphs
Abstract
"In a paper from 2001, Diestel and Leader characterised uncountable graphs with normal spanning trees through a class of forbidden minors. In this talk we investigate under which circumstances this class of forbidden minors can be made nice. In particular, we will see that there is a nice solution to this problem under Martin’s Axiom. Also, some connections to the Stone-Chech remainder of the integers, and almost disjoint families are uncovered.”
15:00
More Efficient Structure-Preserving Signatures: Or Bypassing the Lower Bounds
Abstract
Structure-preserving signatures are an important cryptographic primitive that is useful for the design of modular cryptographic protocols. In this work, we show how to bypass most of the existing lower bounds in the most efficient Type-III bilinear group setting. We formally define a new variant of structure-preserving signatures in the Type-III setting and present a number of fully secure schemes with signatures half the size of existing ones. We also give different constructions including constructions of optimal one-time signatures. In addition, we prove lower bounds and provide some impossibility results for the variant we define. Finally, we show some applications of the new constructions.
The wall-crossing formula and spaces of quadratic differentials
Abstract
The wall-crossing behaviour of Donaldson-Thomas invariants in CY3 categories is controlled by a beautiful formula involving the group of automorphisms of a symplectic algebraic torus. This formula invites one to solve a certain Riemann-Hilbert problem. I will start by explaining how to solve this problem in the simplest possible case (this is undergraduate stuff!). I will then talk about a more general class of examples of the wall-crossing formula involving moduli spaces of quadratic differentials.
14:30
Homogenized boundary conditions and resonance effects in Faraday cages
Abstract
The Faraday cage effect is the phenomenon whereby electrostatic and electromagnetic fields are shielded by a wire mesh "cage". Nick Trefethen, Jon Chapman and I recently carried out a mathematical analysis of the two-dimensional electrostatic problem with thin circular wires, demonstrating that the shielding effect is not as strong as one might infer from the physics literature. In this talk I will present new results generalising the previous analysis to the electromagnetic case, and to wires of arbitrary shape. The main analytical tool is the asymptotic method of multiple scales, which is used to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. In the electromagnetic case one observes interesting resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells. This is joint work with Ian Hewitt.
14:30
Parking in Trees and Mappings - Enumerative Results and a Phase Change Behaviour
Abstract
Strongly dense subgroups of semisimple algebraic groups.
Abstract
A subgroup Gamma of a semisimple algebraic group G is called strongly dense if every subgroup of Gamma is either cyclic or Zariski-dense. I will describe a method for building strongly dense free subgroups inside a given Zariski-dense subgroup Gamma of G, thus providing a refinement of the Tits alternative. The method works for a large class of G's and Gamma's. I will also discuss connections with word maps and expander graphs. This is joint work with Bob Guralnick and Michael Larsen.