Minimal hypersurfaces with bounded index

16 June 2016
Ben Sharp
An embedded hypersurface in a Riemannian manifold is said to be minimal if it is a critical point with respect to the induced area. The index of a minimal hypersurface (roughly speaking) tells us how many ways one can locally deform the surface to decrease area (so that strict local area-minimisers have index zero). We will give an overview of recent works linking the index, topology and geometry of closed and embedded minimal hypersurfaces. The talk will involve separate joint works with Reto Buzano, Lucas Ambrozio and Alessandro Carlotto. 
  • PDE CDT Lunchtime Seminar