Recent progress in Ambitwistor strings
Abstract
New ambitwistor string models are presented for a variety of theories and older models are shown to work at 1 loop and perhaps higher using a simpler formulation on the Riemann sphere.
New ambitwistor string models are presented for a variety of theories and older models are shown to work at 1 loop and perhaps higher using a simpler formulation on the Riemann sphere.
Abstract:In the first part of the talk, using classical hypergeometric identities, I will compute the harmonic measure of finite intervals and their complementaries for the Lévy stable process on the line. This gives a simple and unified proof of several results by Blumenthal-Getoor-Ray, Rogozin, and Kyprianou-Pardo-Watson. In the second part of the talk, I will consider the two-dimensional Markov process based on the stable Lévy process and its area process. I will give two explicit formulae for the harmonic measure of the split complex plane. These formulae allow to compute the persistence exponent of the stable area process, solving a problem raised by Zhan Shi. This is based on two joint works with Christophe Profeta.
In this talk I will define algebraic automorphic forms, first defined by Gross, which are objects that are conjectured to have Galois representations attached to them. I will explain how this fits into the general picture of the Langlands program and, giving some examples, briefly describe one method of proving certain cases of the conjecture.
In the first part of this talk, we will give a very gentle introduction to the Ising model. Then , we will explain a very simple proof of a combinatorial formula for the 2D Ising model partition function using the language of Kac-Ward matrices. This approach can be used for general weighted graphs embedded in surfaces, and extends to the study of several other observables. This is a joint work with Dima Chelkak and Adrien Kassel.
Abstract: It has been recently shown that rough volatility models reproduce very well the statistical properties of low frequency financial data. In such models, the volatility process is driven by a fractional Brownian motion with Hurst parameter of order 0.1. The goal of this talk is to explain how such fractional dynamics can be obtained from the behaviour of market participants at the microstructural scales.
Using limit theorems for Hawkes processes, we show that a rough volatility naturally arises in the presence of high frequency trading combined with metaorders splitting. This is joint work with Thibault Jaisson.
Surface waves modify the fluid dynamics of the upper ocean not only through wave breaking but also through phase-averaged effects involving the surface-wave Stokes drift velocity. Chief among these rectified effects is the generation of a convective flow known as Langmuir circulation (or “Langmuir turbulence”). Like stress-driven turbulence in the absence of surface waves, Langmuir turbulence is characterized by streamwise-oriented quasi-coherent roll vortices and streamwise streaks associated with spanwise variations in the streamwise flow. To elucidate the fundamental differences between wave-free (shear) and wave-catalyzed (Langmuir) turbulence, two separate asymptotic theories are developed in parallel. First, a large Reynolds number analysis of the Navier–Stokes equations that describes a self-sustaining process (SSP) operative in linearly stable wall-bounded shear flows is recounted. This theory is contrasted with that emerging from an asymptotic reduction in the strong wave-forcing limit of the Craik–Leibovich (CL) equations governing Langmuir turbulence. The comparative analysis reveals important structural and dynamical differences between the SSPs in shear flows with and without surface waves and lends further support to the view that Langmuir turbulence in the upper ocean is a distinct turbulence regime.
Mammalian lung morphology is well optimized for efficient bulk transport of gases, yet most lung morphogenesis occurs prenatally, when the lung is filled with liquid - and at birth it is immediately ready to function when filled with gas. Lung morphogenesis is regulated by numerous mechanical inputs including fluid secretion, fetal breathing movements, and peristalsis. We generally understand which of these broad mechanisms apply, and whether they increase or decrease overall size and/or branching. However, we do not generally have a clear understanding of the intermediate mechanisms actuating the morphogenetic control. We have studied this aspect of lung morphogenesis from several angles using mathematical/mechanical/transport models tailored to specific questions. How does lumen pressure interact with different locations and tissues in the lung? Is static pressure equivalent to dynamic pressure? Of the many plausible cellular mechanisms of mechanosensing in the prenatal lung, which are compatible with the actual mechanical situation? We will present our models and results which suggest that some hypothesized intermediate mechanisms are not as plausible as they at first seem.
We provide a new algorithm for approximating the law of a one-dimensional diffusion M solving a stochastic differential equation with possibly irregular coefficients.
The algorithm is based on the construction of Markov chains whose laws can be embedded into the diffusion M with a sequence of stopping times. The algorithm does not require any regularity or growth assumption; in particular it applies to SDEs with coefficients that are nowhere continuous and that grow superlinearly. We show that if the diffusion coefficient is bounded and bounded away from 0, then our algorithm has a weak convergence rate of order 1/4. Finally, we illustrate the algorithm's performance with several examples.
In 1851, Carl Jacobi made the experimental observation that all integers are sums of seven non-negative cubes, with precisely 17 exceptions, the largest of which is 454. Building on previous work by Maillet, Landau, Dickson, Linnik, Watson, Bombieri, Ramaré, Elkies and many others, we complete the proof of Jacobi's observation.
We consider the impact of spatial heterogeneities on the dynamics of
localized patterns in systems of partial differential equations (in one
spatial dimension). We will mostly focus on the most simple possible
heterogeneity: a small jump-like defect that appears in models in which
some parameters change in value as the spatial variable x crosses
through a critical value -- which can be due to natural inhomogeneities,
as is typically the case in ecological models, or can be imposed on the
model for engineering purposes, as in Josephson junctions. Even such a
small, simplified heterogeneity may have a crucial impact on the
dynamics of the PDE. We will especially consider the effect of the
heterogeneity on the existence of defect solutions, which boils down to
finding heteroclinic (or homoclinic) orbits in an n-dimensional
dynamical system in `time' x, for which the vector field for x > 0
differs slightly from that for x < 0 (under the assumption that there is
such an orbit in the homogeneous problem). Both the dimension of the
problem and the nature of the linearized system near the limit points
have a remarkably rich impact on the defect solutions. We complement the
general approach by considering two explicit examples: a heterogeneous
extended Fisher–Kolmogorov equation (n = 4) and a heterogeneous
generalized FitzHugh–Nagumo system (n = 6).
Oxford Mathematics Public Lectures
MC Escher - Artist, Mathematician, Man
Roger Penrose and Jon Chapman
This lecture has now sold out
The symbiosis between mathematics and art is personified by the relationship between Roger Penrose and the great Dutch graphic artist MC Escher. In this lecture Roger will give a personal perspective on Escher's work and his own relationship with the artist while Jon Chapman will demonstrate the mathematical imagination inherent in the work.
The lecture will be preceded by a showing of the BBC 4 documentary on Escher presented by Sir Roger Penrose. Private Escher prints and artefacts will be on display outside the lecture theatre.
5pm
Lecture Theatre 1
Mathematical Institute
Andrew Wiles Building
Radcliffe Observatory Quarter
Woodstock Road
OX2 6GG
Roger Penrose is Emeritus Rouse Ball Professor at the Mathematical Institute in Oxford
Jon Chapman is Statutory Professor of Mathematics and Its Applications at the Mathematical Institute in Oxford
This is an exciting time to study quantum algorithms. As the technological challenges of building a quantum computer continue to be met there is still much to learn about the power of quantum computing. Understanding which problems a quantum computer could solve faster than a classical device and which problems remain hard is particularly relevant to cryptography. We would like to design schemes that are secure against an adversary with a quantum computer. I'll give an overview of the quantum computing that is accessible to a general audience and use a recently declassified project called "soliloquy" as a case study for the development (and breaking) of post-quantum cryptography.
Many people talk about properties that you would expect of a group. When they say this they are considering random groups, I will define what it means to pick a random group in one of many models and will give some properties that these groups will have with overwhelming probability. I will look at the proof of some of these results although the talk will mainly avoid proving things rigorously.
I will explain how to relate the center of a cyclotomic quiver Hecke algebras to the cohomology of Nakajima quiver varieties using a current algebra action. This is a joint work with M. Varagnolo and E. Vasserot.
It has become possible in recent years to provide unconditional lower bounds on the time needed to perform a number of basic computational operations. I will briefly discuss some of the main techniques involved and show how one in particular, the information transfer method, can be exploited to give time lower bounds for computation on streaming data.
I will then go on to present a simple looking mathematical conjecture with a probabilistic combinatorics flavour that derives from this work. The conjecture is related to the classic "coin weighing with a spring scale" puzzle but has so far resisted our best efforts at resolution.
Given a hypersurface, the Bernstein-Sato polynomial gives deep information about its singularities. It is defined by a D-module (the algebraic formalism of differential equations) closely related to analytic continuation of the gamma function. On the other hand, given a hypersurface (in a Calabi-Yau variety) one can also consider the Hamiltonian flow by divergence-free vector fields, which also defines a D-module considered by Etingof and myself. I will explain how, in the case of quasihomogeneous hypersurfaces with isolated singularities, the two actually coincide. As a consequence I affirmatively answer a folklore question (to which M. Saito recently found a counterexample in the non-quasihomogeneous case): if c$ is a root of the b-function, is the D-module D f^c / D f^{c+1} nonzero? We also compute this D-module, and for c=-1 its length is one more than the genus (conjecturally in the non-quasihomogenous case), matching an analogous D-module in characteristic p. This is joint work with Bitoun.
An edge (vertex) coloured graph is rainbow-connected if there is a rainbow path between any two vertices, i.e. a path all of whose edges (internal vertices) carry distinct colours. Rainbow edge (vertex) connectivity of a graph G is the smallest number of colours needed for a rainbow edge (vertex) colouring of G. We propose a very simple approach to studying rainbow connectivity in graphs. Using this idea, we give a unified proof of several new and known results, focusing on random regular graphs. This is joint work with Michael Krivelevich and Benny Sudakov.
If $R = F_q[t]$ is the polynomial ring over a finite field
then the group $SL_2(R)$ is not finitely generated. The group $SL_3(R)$ is
finitely generated but not finitely presented, while $SL_4(R)$ is
finitely presented. These examples are facets of a larger picture that
I will talk about.
TBA
This will be an overview of Prof Stroffolini's research and precursor to the eight-hour mini-course Prof Stroffolini will be giving later in October.
One way of understanding groups is by investigating their actions on special spaces, such as Hilbert and Banach spaces, non-positively curved spaces etc. Classical properties like Kazhdan property (T) and the Haagerup property are formulated in terms of such actions and turn out to be relevant in a wide range of areas, from the conjectures of Baum-Connes and Novikov to constructions of expanders. In this talk I shall overview various generalisations of property (T) and Haagerup to Banach spaces, especially in connection with classes of groups acting on non-positively curved spaces.
The 3d/3d correspondence is about the correspondence between 3d N=2 supersymmetric gauge theories and the 3d complex Chern-Simons theory on a 3-manifold.
In this talk I will describe codimension 2 and 4 supersymmetric defects in this correspondence, by a combination of various existing techniques, such as state-integral models, cluster algebras, holographic dual, and 5d SYM.
Studies of thermal convection in planetary interiors have largely focused on convection above the critical Rayleigh number. However, convection in planetary mantles and crusts can also occur under subcritical conditions. Subcritical convection exhibits phenomena which do not exist above the critical Rayleigh number. One such phenomenon is spatial localization characterized by the formation of stable, spatially isolated convective cells. Spatial localization occurs in a broad range of viscosity laws including temperature-dependent viscosity and power-law viscosity and may explain formation of some surface features observed on rocky and icy bodies in the Solar System.
We develop a novel, fundamental and surprisingly simple randomized iterative method for solving consistent linear systems. Our method has six different but equivalent interpretations: sketch-and-project, constrain-and-approximate, random intersect, random linear solve, random update and random fixed point. By varying its two parameters—a positive definite matrix (defining geometry), and a random matrix (sampled in an i.i.d. fashion in each iteration)—we recover a comprehensive array of well known algorithms as special cases, including the randomized Kaczmarz method, randomized Newton method, randomized coordinate descent method and random Gaussian pursuit. We naturally also obtain variants of all these methods using blocks and importance sampling. However, our method allows for a much wider selection of these two parameters, which leads to a number of new specific methods. We prove exponential convergence of the expected norm of the error in a single theorem, from which existing complexity results for known variants can be obtained. However, we also give an exact formula for the evolution of the expected iterates, which allows us to give lower bounds on the convergence rate.
If you do not know quasicircles, you will understand what they are.
If you hate quasicircles, you will change your mind.
If you already love quasicircles, they will astonish you once more.
Recently, a series of unprecedented leaks by Edward Snowden had made it possible for the first time to get a glimpse into the actual capabilities and limitations of the techniques used by the NSA and GCHQ to eavesdrop to computers and other communication devices. In this talk, I will survey some of the things we have learned, and discuss possible countermeasures against these capabilities.
Seminar series `Symmetries and Correspondences'
We give a classification of open Klein topological conformal field theories in terms of Calabi-Yau $A_\infty$-categories endowed with an involution. Given an open Klein topological conformal field theory, there is a universal open-closed extension whose closed part is the involutive version of the Hochschild chains associated to the open part.
Already Serre's "Cohomologie Galoisienne" contains an exercise regarding the following condition on a field F: For every finite field extension E of F and every n, the index of the n-th powers (E*)^n in the multiplicative group E* is finite. Model theorists recently got interested in this condition, as it is satisfied by every superrosy field and also by every strongly2 dependent field, and occurs in a conjecture of Shelah-Hasson on NIP fields. I will explain how it relates to the better known condition that F is bounded (i.e. F has only finitely many extensions of degree n, for any n - in other words, the absolute Galois group of F is a small profinite group) and why it is not preserved under elementary equivalence. Joint work with Franziska Jahnke.
*** Note unusual day and time ***
I will describe a categorical approach to analytic geometry using the theory of quasi-abelian closed symmetric monoidal categories which works both for Archimedean and non-Archimdedean base fields. In particular I will show how the weak G-topologies of (dagger) affinoid subdomains can be characterized by homological method. I will end by briefly saying how to generalize these results for characterizing open embeddings of Stein spaces. This project is a collaboration with Oren Ben-Bassat and Kobi Kremnizer.
We will discuss our approach to global analytic geometry, based on overconvergent power series and functors of functions. We will explain how slight modifications of it allow us to develop a derived version of global analytic geometry. We will finish by discussing applications to the cohomological study of arithmetic varieties.
I will talk in down to earth terms about several main features of this theory.
We describe how p-adic height pairings allow us to find integral points on hyperelliptic curves, in the spirit of Kim's nonabelian Chabauty program. In particular, we discuss how to carry out this ``quadratic Chabauty'' method over quadratic number fields (joint work with Amnon Besser and Steffen Mueller) and present related ideas to find rational points on bielliptic genus 2 curves (joint work with Netan Dogra).