Thu, 17 Oct 2013

16:00 - 17:00
L3

Patterns in neural field models

Stephen Coombes
(University of Nottingham)
Abstract

Neural field models describe the coarse-grained activity of populations of

interacting neurons. Because of the laminar structure of real cortical

tissue they are often studied in two spatial dimensions, where they are well

known to generate rich patterns of spatiotemporal activity. Such patterns

have been interpreted in a variety of contexts ranging from the

understanding of visual hallucinations to the generation of

electroencephalographic signals. Typical patterns include localised

solutions in the form of travelling spots, as well as intricate labyrinthine

structures. These patterns are naturally defined by the interface between

low and high states of neural activity. Here we derive the equations of

motion for such interfaces and show, for a Heaviside firing rate, that the

normal velocity of an interface is given in terms of a non-local Biot-Savart

type interaction over the boundaries of the high activity regions. This

exact, but dimensionally reduced, system of equations is solved numerically

and shown to be in excellent agreement with the full nonlinear integral

equation defining the neural field. We develop a linear stability analysis

for the interface dynamics that allows us to understand the mechanisms of

pattern formation that arise from instabilities of spots, rings, stripes and

fronts. We further show how to analyse neural field models with

linear adaptation currents, and determine the conditions for the dynamic

instability of spots that can give rise to breathers and travelling waves.

We end with a discussion of amplitude equations for analysing behaviour in

the vicinity of a bifurcation point (for smooth firing rates). The condition

for a drift instability is derived and a center manifold reduction is used

to describe a slowly moving spot in the vicinity of this bifurcation. This

analysis is extended to cover the case of two slowly moving spots, and

establishes that these will reflect from each other in a head-on collision.

Thu, 17 Oct 2013

15:00 - 16:00
L2

The root posets (and the hereditary abelian categories of Dynkin type)

Claus Ringel
(Bielefeld University)
Abstract

Given a root system, the choice of a root basis divides the set of roots into the positive and the negative ones, it also yields an ordering on the set of positive roots. The set of positive roots with respect to this ordering is called a root poset. The root posets have attracted a lot of interest in the last years. The set of antichains (with a suitable ordering) in a root poset turns out to be a lattice, it is called lattice of (generalized) non-crossing partitions. As Ingalls and Thomas have shown, this lattice is isomorphic to the lattice of thick subcategories of a hereditary abelian category of Dynkin type. The isomorphism can be used in order to provide conceptual proofs of several intriguing counting results for non-crossing partitions.

Thu, 17 Oct 2013

14:00 - 15:00
L5

Model Selection with Piecewise Regular Gauges

Dr Gabriel Peyre
(Université Paris Dauphine)
Abstract

In this talk, we investigate in a unified way the structural properties of a large class of convex regularizers for linear inverse problems. We consider regularizations with convex positively 1-homogenous functionals (so-called gauges) which are piecewise smooth. Singularies of such functionals are crucial to force the solution to the regularization to belong to an union of linear space of low dimension. These spaces (the so-called "models") allows one to encode many priors on the data to be recovered, conforming to some notion of simplicity/low complexity. This family of priors encompasses many special instances routinely used in regularized inverse problems such as L^1, L^1-L^2 (group sparsity), nuclear norm, or the L^infty norm. The piecewise-regular requirement is flexible enough to cope with analysis-type priors that include a pre-composition with a linear operator, such as for instance the total variation and polyhedral gauges. This notion is also stable under summation of regularizers, thus enabling to handle mixed regularizations.

The main set of contributions of this talk is dedicated to assessing the theoretical recovery performance of this class of regularizers. We provide sufficient conditions that allow to provably controlling the deviation of the recovered solution from the true underlying object, as a function of the noise level. More precisely we establish two main results. The first one ensures that the solution to the inverse problem is unique and lives on the same low dimensional sub-space as the true vector to recover, with the proviso that the minimal signal to noise ratio is large enough. This extends previous results well-known for the L^1 norm [1], analysis L^1 semi-norm [2], and the nuclear norm [3] to the general class of piecewise smooth gauges. In the second result, we establish L^2 stability by showing that the L^2 distance between the recovered and true vectors is within a factor of the noise level, thus extending results that hold for coercive convex positively 1-homogenous functionals [4].

This is a joint work with S. Vaiter, C. Deledalle, M. Golbabaee and J. Fadili. For more details, see [5].

Bibliography:
[1] J.J. Fuchs, On sparse representations in arbitrary redundant bases. IEEE Transactions on Information Theory, 50(6):1341-1344, 2004.
[2] S. Vaiter, G. Peyré, C. Dossal, J. Fadili, Robust Sparse Analysis Regularization, to appear in IEEE Transactions on Information Theory, 2013.
[3] F. Bach, Consistency of trace norm minimization, Journal of Machine Learning Research, 9, 1019-1048, 2008.
[4] M. Grasmair, Linear convergence rates for Tikhonov regularization with positively homogeneous functionals. Inverse Problems, 27(7):075014, 2011.
[5] S. Vaiter, M. Golbabaee, J. Fadili, G. Peyré, Model Selection with Piecewise Regular Gauges, Preprint hal-00842603, 2013

Thu, 17 Oct 2013

12:00 - 13:00
L6

Penrose’s Weyl Curvature Hypothesis and his Conformal Cyclic Cosmology

Prof. Paul Tod
(OxPDE, University of Oxford)
Abstract

Penrose’s Weyl Curvature Hypothesis, which dates from the late 70s, is a hypothesis, motivated by observation, about the nature of the Big Bang as a singularity of the space-time manifold. His Conformal Cyclic Cosmology is a remarkable suggestion, made a few years ago and still being explored, about the nature of the universe, in the light of the current consensus among cosmologists that there is a positive cosmological constant.  I shall review both sets of ideas within the framework of general relativity, and emphasise how the second set solves a problem posed by the first.

Wed, 16 Oct 2013

16:00 - 17:00
C6

Aperiodic tilings and Groups

Robert Kropholler
(Oxford University)
Abstract

It is an open question whether a group with a finite classifying space is hyperbolic or contains a Baumslag Solitar Subgroup. An idea of Gromov was to use aperiodic tilings of the plane to try and disprove this conjecture. I will be looking at some of the attempts to find a counterexample.

Wed, 16 Oct 2013
11:30
Queen's College

The Solovay-Kitaev Algorithm

Henry Bradford
Abstract

I shall outline a procedure for efficiently approximating arbitrary elements of certain topological groups by words in a finite set. The method is suprisingly general and is based upon the assumption that close to the identity, group elements may be easily expressible as commutators. Time permitting, I shall discuss some applications to uniform diameter bounds for finite groups and to quantum computation.

Tue, 15 Oct 2013
17:00
C5

tba

Konstantin Ardakov
(Oxford)
Tue, 15 Oct 2013

15:45 - 16:45
L4

Noncommutative deformations and birational geometry II

Will Donovan
(Edinburgh)
Abstract

I will speak about recent work with Michael Wemyss (arXiv:1309.0698), applying noncommutative deformation theory to study the birational geometry of 3-folds. In particular, I will explain how every flippable or floppable rational curve in a 3-fold has a naturally associated algebra of noncommutative deformations, even in the singular setting. We investigate the properties of this algebra, and indicate how to calculate it in examples using quiver techniques. This gives new information about the (commutative) geometry of 3-folds, and in particular provides a new tool to differentiate between flops.

As a further application, we show how the noncommutative deformation algebra controls the homological properties of a floppable curve. In this setting, work of Bridgeland and Chen yields a Fourier-Mukai flop-flop functor which acts on the derived category of the 3-fold (assuming any singularities are at worst Gorenstein terminal). We show that this functor can be described as a spherical twist about the universal family over the noncommutative deformation algebra.

In the second part, I will talk about further work in progress, and explain some more technical details, such as the use of noncommutative deformation functors, and the categorical mutations of Iyama and Wemyss. If there is time, I will also give some higher-dimensional examples, and discuss situations involving chains of intersecting floppable curves. In this latter case, deformations, intersections and homological properties are encoded by the path algebra of a quiver, generalizing the algebra of noncommutative deformations.

Tue, 15 Oct 2013

14:30 - 15:00
L5

A multilevel preconditioner for the biharmonic equation

Lorenz John
(Graz University of Technology)
Abstract

We present a multilevel preconditioner for the mixed finite element discretization of the biharmonic equation of first kind. While for the interior degrees of freedom a standard multigrid methods can be applied, a different approach is required on the boundary. The construction of the preconditioner is based on a BPX type multilevel representation in fractional Sobolev spaces. Numerical examples illustrate the obtained theoretical results.

Tue, 15 Oct 2013

14:30 - 15:30
C2

Containers for independent sets

Andrew Thomason
(University of Cambridge)
Abstract

An independent set in an $r$-uniform hypergraph is a subset of the vertices that contains no edges. A container for the independent set is a superset of it. It turns out to be desirable for many applications to find a small collection of containers, none of which is large, but which between them contain every independent set. ("Large" and "small" have reasonable meanings which will be explained.)

Applications include giving bounds on the list chromatic number of hypergraphs (including improving known bounds for graphs), counting the solutions to equations in Abelian groups, counting Sidon sets, establishing extremal properties of random graphs, etc.

The work is joint with David Saxton.

Tue, 15 Oct 2013

14:00 - 14:30
L5

Hybrid numerical-asymptotic methods for wave scattering problems

David Hewett
(Mathematics Institute)
Abstract

Linear wave scattering problems (e.g. for acoustic, electromagnetic and elastic waves) are ubiquitous in science and engineering applications. However, conventional numerical methods for such problems (e.g. FEM or BEM with piecewise polynomial basis functions) are prohibitively expensive when the wavelength of scattered wave is small compared to typical lengthscales of the scatterer (the so-called "high frequency" regime). This is because the solution possesses rapid oscillations which are expensive to capture using conventional approximation spaces. In this talk I will outline some of my recent work in the development of "hybrid numerical-asymptotic" methods, which incur significantly reduced computational cost. These methods use approximation spaces containing oscillatory basis functions, carefully chosen to capture the high frequency asymptotic behaviour. In particular I will discuss some of the interesting challenges arising from non convex, penetrable and three-dimensional scatterers.

Tue, 15 Oct 2013

14:00 - 15:00
L4

Noncommutative deformations and birational geometry I

Will Donovan
(Edinburgh)
Abstract

I will speak about recent work with Michael Wemyss (arXiv:1309.0698), applying noncommutative deformation theory to study the birational geometry of 3-folds. In particular, I will explain how every flippable or floppable rational curve in a 3-fold has a naturally associated algebra of noncommutative deformations, even in the singular setting. We investigate the properties of this algebra, and indicate how to calculate it in examples using quiver techniques. This gives new information about the (commutative) geometry of 3-folds, and in particular provides a new tool to differentiate between flops.

As a further application, we show how the noncommutative deformation algebra controls the homological properties of a floppable curve. In this setting, work of Bridgeland and Chen yields a Fourier-Mukai flop-flop functor which acts on the derived category of the 3-fold (assuming any singularities are at worst Gorenstein terminal). We show that this functor can be described as a spherical twist about the universal family over the noncommutative deformation algebra.

In the second part, I will talk about further work in progress, and explain some more technical details, such as the use of noncommutative deformation functors, and the categorical mutations of Iyama and Wemyss. If there is time, I will also give some higher-dimensional examples, and discuss situations involving chains of intersecting floppable curves. In this latter case, deformations, intersections and homological properties are encoded by the path algebra of a quiver, generalizing the algebra of noncommutative deformations.

Tue, 15 Oct 2013
00:00

Krull dimension of affinoid enveloping algebras.

Konstantin Ardakov
Abstract

Affinoid enveloping algebras arise as certain p-adic completions of ordinary enveloping algebras, and are closely related to Iwasawa algebras. I will explain how to use Beilinson-Bernstein localisation to compute their (non-commutative) Krull dimension. This is recent joint work with Ian Grojnowski.

Mon, 14 Oct 2013

17:00 - 18:00
C5

Calculations with elliptic curves

Jan Vonk
Abstract

We will discuss some geometric methods to study Diophantine equations. We focus on the case of elliptic curves and their natural generalisations: Abelian varieties, Calabi-Yau manifolds and hyperelliptic curves. 

Mon, 14 Oct 2013

15:45 - 16:45
Oxford-Man Institute

"Pathwise optimal transport bounds between a one-dimensional diffusion and its Euler scheme"

Benjamin Jourdain
(CERMICS Marne la Vallee)
Abstract

(joint work with Aurélien Alfonsi and Arturo Kohatsu-Higa)

We are interested in the Wasserstein distance on the space of continuous sample-paths equipped with the supremum norm between the laws of a uniformly elliptic one-dimensional diffusion process and its continuous-time Euler scheme with N steps. This distance controls the discretization biais for a large class of path-dependent payoffs.

Its convergence rate to 0 is clearly intermediate between -the rate -1/2 of the strong error estimation obtained when coupling the stochastic differential equation and its Euler scheme with the same Brownian motion -and the rate -1 of the weak error estimation obtained when comparing the expectations of the same function of the diffusion and its Euler scheme at the terminal time.

For uniformly elliptic one-dimensional stochastic differential equations, we prove that this rate is not worse than -2/3.

Mon, 14 Oct 2013

14:15 - 15:15
Oxford-Man Institute

Stuck Walks: a conjecture of Erschler, Tóth and Werner

Daniel Kious
(University of Paul Sabatier Toulouse)
Abstract

Abstract: In 2010, Erschler, Tóth and Werner introduced the so-called Stuck Walks, which are a class of self-interacting random walks on Z for which there is competition between repulsion at small scale and attraction at large scale. They proved that, for any positive integer L, if the relevant parameter belongs to a certain interval, then such random walks localize on L + 2 sites with positive probability. They also conjectured that it is the almost sure behaviour. We settle this conjecture partially, proving that the walk localizes on L + 2 or L + 3 sites almost surely, under the same assumptions.

Mon, 14 Oct 2013

12:00 - 13:00
L5

Higher-Spin Correlators

Agnese Bissi
(Oxford)
Abstract
In this talk I will discuss the three-point correlator of two protected scalar operators and one higher spin twist-two operator in N = 4 SYM, in the limit of large spin. This structure constant can be extracted from the OPE of the four-point correlator of protected scalar operators. Based on the OPE structure, symmetry arguments and intuition from the available perturbative results, it is possible to predict the structure constant at all loops in perturbation theory. This being so, it is natural to propose an expression for the all-loop four-point correlator in a particular limit.
Fri, 11 Oct 2013
12:00
L5

Large-N QCD as a Topological Field Theory on twistor space

Marco Bochicchio
(University of Rome Sapienza)
Abstract

According to Witten a gauge theory with a mass gap contains a possibly trivial Topological Field Theory  (TFT) in the infrared.  We show that in SU(N) YM it there exists a trivial TFT defined by   twistor Wilson loops whose v.e.v. is 1 in the large-N limit for any shape of the loops supported on certain Lagrangian submanifolds of space-time that lift to Lagrangian submanifolds of twistor space.

We derive a new version of the Makeenko-Migdal loop equation for the topological twistor Wilson loops, the holomorphic loop equation, that involves the change of variables in the YM functional integral from the connection to the anti-selfdual part of the curvature and the choice of a holomorphic gauge.

Employing the holomorphic loop equation and viewing Floer homology the other way around,
we associate to arcs asymptotic in both directions to the cusps of the Lagrangian submanifolds the critical points of an effective action implied by the holomorphic loop equation. The critical points of the effective action, being associated to the homology of the punctured Lagrangian submanifolds, consist of surface operators of the YM theory, supported on the punctures.  The correlators of surface operators in the TFT satisfy for large momentum the constraint that follows by the renormalization group and by the asymptotic freedom and they are saturated by an infinite sum of pure poles of scalar and pseudoscalar glueballs, whose joint spectrum is exactly linear in the mass squared.

For several physical purposes we outline  a related construction of a twistorial Topological String Theory dual to the TFT, that involves the Chern-Simons action on Lagrangian submanifolds of  
twistor space.

Tue, 01 Oct 2013

11:30 - 12:30
C1

Theory and applications of relative entropy weighted optimization

Joris Bierkens
(Radboud Universiteit Nijmegen)
Abstract

Relative entropy weighted optimization is convex optimization problem over the space of probability measures. Many convex optimization problems can be rephrased as such a problem. This is particularly useful since this problem type admits a quasi-explicit solution (i.e. as the expectation over a random variable), which immediately provides a Monte-Carlo method for numerically computing the solution of the optimization problem.

In this talk we discuss the background and application of this approach to stochastic optimal control problems, which may be considered as relative entropy weighted problems with Wiener space as probability space, and its connection with the theory of large deviations for Brownian functionals. As a particular application we discuss the minimization of the local time in a given point of Brownian motion with drift.

Fri, 13 Sep 2013

11:00 - 12:00
L4

STUDIES OF SINGLE CELL AND CELL POPULATION BEHAVIORS IN 3D CO-CULTURE MICROFLUIDIC SYSTEMS

Professor Roger Kamm
(Massachusetts Institute of Technology)
Abstract

Recent years have seen rapid expansion of the capabilities 
to recreate in vivo conditions using in vitro microfluidic assays.  
A wide range of single cell and cell population behaviors can now 
be replicated, controlled and imaged for detailed studies to gain 
new insights.  Such experiments also provide useful fodder for 
computational models, both in terms of estimating model parameters 
and for testing model-generated hypotheses.  Our experiments have 
focused in several different areas.  
1) Single cell migration experiments in 3D collagen gels have 
revealed that interstitial flow can lead to biased cell migration 
in the upstream direction, with important implications to cancer 
invasion.  We show this phenomenon to be a consequence of 
integrin-mediated mechanotransduction.  
2) Endothelial cells seeded in fibrin gels form perfusable 
vascular networks within 2-3 days through a process termed 
“vasculogenesis”.  The process by which cells sense their 
neighbours, extend projections and form anastomoses, and 
generate interconnected lumens can be observed through time-lapse 
microscopy.  
3) These vascular networks, once formed, can be perfused with 
medium containing cancer cells that become lodged in the 
smaller vessels and proceed to transmigrate across the endothelial 
barrier and invade into the surrounding matrix.  High resolution 
imaging of this process reveals a fascinating sequence of events 
involving interactions between a tumour cell, endothelial cells, 
and underlying matrix.  These three examples will be presented 
with a view toward gaining new insights through computational 
modelling of the associated phenomena.

Wed, 07 Aug 2013

12:00 - 13:00
Gibson Grd floor SR

An Initial-Boundary Value Problem for the Fully-Coupled Navier-Stokes/Q-Tensor System

Yuning Liu
(University of Regensburg)
Abstract

We will present in this lecture the global existence of weak solutions and the local existence and uniqueness of strong-in-time solutions for the fully-coupled Navier-Stokes/Q-tensor system on a bounded domain $\O\subset\mathbb{R}^d$ ($d=2,3$) with inhomogenerous Dirichlet and Neumann or mixed boundary conditions. Our result is valid for any physical parameter $\xi$ and we consider the Navier-Stokes equations with a general (but smooth) viscosity coefficient.

Wed, 17 Jul 2013

10:15 - 11:15
OCCAM Common Room (RI2.28)

Dispersion of particles dropped on a liquid

Benoit Darrasse
(Ecole Polytechnique)
Abstract

The good use of condiments is one of the secrets of a tasty quiche. If you want to delight your guests, add a pinch of ground pepper or cinnamon to the yellow liquid formed by the mix of the eggs and the crème fraiche. Here, is a surprise : even if the liquid is at rest, the pinch of milled pepper spreads by itself at the surface of the mixture. It expands in a circular way, and within a few seconds, it covers an area equal to several times its initial one. Why does it spread like that ? What factors influence this dispersion ? I will present some experiments and mathematical models of this process.

Tue, 16 Jul 2013

10:15 - 11:15
OCCAM Common Room (RI2.28)

Coarsening rates for the dynamics of interacting slipping droplets

Georgy Kitavtsev
(Max Planck Institute)
Abstract

*****     PLEASE NOTE THIS SEMINAR TAKES PLACE ON TUESDAY     *****

Reduced ODE models describing coarsening dynamics of droplets in nanometric polymer film interacting on solid substrate in the presence of large slippage at the liquid/solid interface are derived from one-dimensional lubrication equations. In the limiting case of the infinite slip length corresponding to the free suspended films a collision/absorption model then arises and is solved explicitly. The exact collision law is derived. Existence of a threshold at which the collision rates switch from algebraic to exponential ones is shown.

*****     PLEASE NOTE THIS SEMINAR TAKES PLACE ON TUESDAY     *****

Mon, 15 Jul 2013

10:15 - 11:15
OCCAM Common Room (RI2.28)

Measuring ultralow interfacial tensions in microfluidics with magnetic particles

Scott Tsai
(Ryerson University)
Abstract

*****     PLEASE NOTE THIS SEMINAR TAKES PLACE ON MONDAY     *****

Ultralow interfacial tension mixtures have interfacial tensions that are 1,000 times, or more, lower than typical oil-water systems. Despite the recent utility of ultralow interfacial tension mixtures in industry and research, quantifying the interfacial tension remains challenging. Here I describe a technique that measures ultralow interfacial tensions by magnetically deflecting paramagnetic spheres in a co-flow microfluidic device. This method involves the tuning of the distance between the co-flowing interface and the magnetic field source, and observing the behavior of the magnetic particles as they approach the liquid-liquid interface--the particles either pass through or are trapped. I demonstrate the effectiveness of this technique for measuring very low interfacial tensions by testing solutions of different surfactant concentrations, and show that the results are comparable with measurements made using a spinning drop tensiometer.

*****     PLEASE NOTE THIS SEMINAR TAKES PLACE ON MONDAY     *****

Mon, 24 Jun 2013

10:00 - 10:30
OCCAM Common Room (RI2.28)

Energy equations and their fast solution

Prof. Tongxiang Gu
(Beijing)
Abstract

*****     PLEASE NOTE THIS SEMINAR WILL TAKE PLACE ON MONDAY 24TH JUNE 2013     *****

Energy equations describing magnetic and inertial confinement functions (ICF) are strongly coupled, time dependent non-linear PDEs. The huge disparity of the coefficients in the coupled non-linear equations brings tremendous numerical difficulties to get high resolution solutions. It results in highly ill-conditioned linear systems in each non-linear iteration. Solving the resulted non-linear systems is time-consuming which takes up to 90% in the total simulation time. Many customized numerical techniques have to be employed to get a robust and accurate solution.This talk will present an inexact Newton-Krylov-Schwarz framework to solve the problem, demonstrating how to integrate preconditioning, partial Jacobian matrix forming techniques, parallel computing techniques with the Newton-Krylov solvers to solve the challenging problem. The numerical results will be shown and other numerical problems will be mentioned.

*****     If anyone is planning to take the 11.36 train after the seminar to the NA conference in Glasgow a taxi from the Gibson building is being arranged. Please contact Jude, @email, to book a place in the taxi.     *****

Thu, 20 Jun 2013
12:00
Gibson 1st Floor SR

Determining White Noise Forcing From Eulerian Observations in the Navier Stokes Equation

Hoang Viet Ha
(Nanyang Technological University)
Abstract

The Bayesian approach to inverse problems is of paramount importance in quantifying uncertainty about the input to and the state of a system of interest given noisy observations. Herein we consider the forward problem of the forced 2D Navier Stokes equation. The inverse problem is inference of the forcing, and possibly the initial condition, given noisy observations of the velocity field. We place a prior on the forcing which is in the form of a spatially correlated temporally white Gaussian process, and formulate the inverse problem for the posterior distribution. Given appropriate spatial regularity conditions, we show that the solution is a continuous function of the forcing. Hence, for appropriately chosen spatial regularity in the prior, the posterior distribution on the forcing is absolutely continuous with respect to the prior and is hence well-defined. Furthermore, the posterior distribution is a continuous function of the data.

\\ \\

This is a joint work with Andrew Stuart and Kody Law (Warwick)

Wed, 19 Jun 2013

12:00 - 13:00
OCCAM Common Room (RI2.28)

Swimming droplets and chimera clocks

Shashi Thutupalli
(Mechanical and Aerospace Engineering)
Abstract

*****     PLEASE NOTE THIS SEMINAR WILL COMMENCE AT 12.00     *****

I will present experimental work on collective dynamics in two different systems: (i) a collection of self propelled droplets and (ii) coupled mechanical oscillators.  

In the first part, I will talk about microswimmers made from water-in-oil emulsion droplets. Following a brief description of the swimming mechanism, I will discuss some of the collective effects that emerge in quasi 1 and 2 dimensional confinements of swimming droplets. Specifically, I dwell on hydrodynamic and volume exclusion interactions, only through which these droplets can couple their motions. 

In the second part, I will present recent results about an intriguing dynamic known as a chimera state. In the world of coupled oscillators, a chimera state is the co-existence of synchrony and asynchrony in a population of identical oscillators, which are coupled nonlocally. Following nearly 10 years of intense theoretical research, it has been an imminent question whether these chimera states exist in real systems. Recently, we built an experiment with of springs, swings and metronomes and realised, for the first time, these symmetry breaking states in a purely physical system.

*****     PLEASE NOTE THIS SEMINAR WILL COMMENCE AT 12.00     *****

Mon, 17 Jun 2013

12:00 - 13:00
OCCAM Common Room (RI2.28)

Multiscale Dataflow Computing

Dr Oskar Menser
(Imperial College London)
Abstract

*****     PLEASE NOTE THIS SEMINAR WILL TAKE PLACE ON MONDAY 17TH JUNE 2013     *****

Computing is an exercise of discretization of the real world into space, time, and value. While discretization in time and space is well understood in the sciences, discretization of value is a scientific domain full of opportunity. Maxeler's Multiscale Dataflow Computing allows the programmer to finely trade off discretization of value with real performance measured in wallclock time.

In this talk I will show the connection between discretization of value and Kolmogorov Complexity on one hand and approximation theory on the other. Utilizing the above concepts together with building general purpose computing systems based on dataflow concepts, has enabled us to deliver production systems for Oil & Gas imaging (modelling, multiple elimination, RTM, Geomechanics), Finance Risk (derivatives modelling and scenario analysis), as well as many scientific application such as computing weather models, Astrochemistry, and brain simulations. Algorithms range from 3D Finite Difference, Finite Elements (sparse matrix solvers), pattern matching, conjugate gradient optimization, to communication protocols and bitcoin calculations. Published results of users of our machines show a 20-50x total advantage in computations per unit space (1U) and computations per Watt.

*****     PLEASE NOTE THIS SEMINAR WILL TAKE PLACE ON MONDAY 17TH JUNE 2013     *****