Seminar series
Date
Thu, 23 Jan 2014
Time
16:00 - 17:00
Location
L5
Speaker
Samir Siksek
Organisation
University of Warwick

We combine recent breakthroughs in modularity lifting with a
3-5-7 modularity switching argument to deduce modularity of elliptic curves over real
quadratic fields. We
discuss the implications for the Fermat equation. In particular we
show that if d is congruent
to 3 modulo 8, or congruent to 6 or 10 modulo 16, and $K=Q(\sqrt{d})$
then there is an
effectively computable constant B depending on K, such that if p>B is prime,
and $a^p+b^p+c^p=0$ with a,b,c in K, then abc=0.   This is based on joint work with Nuno Freitas (Bayreuth) and Bao Le Hung (Harvard).

Last updated on 4 Apr 2022, 2:57pm. Please contact us with feedback and comments about this page.