Thu, 31 Oct 2024
17:00

The Koponen Conjecture

Scott Mutchnik
(IMJ-PRG)
Abstract
This is on joint work with John Baldwin and James Freitag.
One of the central projects of model theory, initiated by Shelah in his book "Classification Theory," is to classify unstable first-order theories. As part of this program, Koponen proposes to classify simple homogeneous structures, such as the random graph. More precisely, she conjectures (2016) that all simple theories with quantifier elimination in a finite relational language are supersimple of finite rank, and asks (2014) whether they are one-based. In this talk, we discuss our resolution of the Koponen conjecture, where we show that the answer to this question is yes. In the process, we further demonstrate what Kennedy (2020) calls ''the fragility of the syntax-semantics distinction.”
Thu, 31 Oct 2024
16:00
L4

Re(Visiting) Large Language Models in Finance

Eghbal Rahimikia
(University of Manchester)
Abstract

This study introduces a novel suite of historical large language models (LLMs) pre-trained specifically for accounting and finance, utilising a diverse set of major textual resources. The models are unique in that they are year-specific, spanning from 2007 to 2023, effectively eliminating look-ahead bias, a limitation present in other LLMs. Empirical analysis reveals that, in trading, these specialised models outperform much larger models, including the state-of-the-art LLaMA 1, 2, and 3, which are approximately 50 times their size. The findings are further validated through a range of robustness checks, confirming the superior performance of these LLMs.

Thu, 31 Oct 2024
16:00
L3

Cusp forms of level one and weight zero

George Boxer
(Imperial College London)
Abstract
A theme in number theory is the non-existence of objects which are "too unramified".  For instance, by Minkowski there are no everywhere unramified extensions of Q, and by Fontaine and Abrashkin there are no abelian varieties over Q with everywhere good reduction.  Such results may be viewed (possibly conditionally) through the lens of the Stark-Odlyzko positivity method in the theory of L-functions.
 
After reviewing these things, I will turn to the question of this talk: for n>1 do there exist cuspidal automorphic forms for GL_n which are everywhere unramified and have lowest regular weight (cohomological weight 0)?  For n=2 these are more familiarly holomorphic cuspforms of level 1 and weight 2.  This question may be rephrased in terms of the existence of cuspidal cohomology of GL_n(Z) or (at least conjecturally) in terms of the existence of certain motives or Galois representations.  In 1997, Stephen Miller used the positivity method to show that they do not exist for n<27.  In the other direction, in joint work with Frank Calegari and Toby Gee, we prove that they do exist for some n, including n=79,105, and 106.
Thu, 31 Oct 2024

14:00 - 15:00
Lecture Room 3

Theory to Enable Practical Quantum Advantage

Balint Koczor
(Oxford University)
Abstract

Quantum computers are becoming a reality and current generations of machines are already well beyond the 50-qubit frontier. However, hardware imperfections still overwhelm these devices and it is generally believed the fault-tolerant, error-corrected systems will not be within reach in the near term: a single logical qubit needs to be encoded into potentially thousands of physical qubits which is prohibitive.

 

Due to limited resources, in the near term, hybrid quantum-classical protocols are the most promising candidates for achieving early quantum advantage and these need to resort to quantum error mitigation techniques. I will explain the basic concepts and introduce hybrid quantum-classical protocols are the most promising candidates for achieving early quantum advantage. These have the potential to solve real-world problems---including optimisation or ground-state search---but they suffer from a large number of circuit repetitions required to extract information from the quantum state. I will finally identify the most likely areas where quantum computers may deliver a true advantage in the near term.

 

Bálint Koczor

Associate Professor in Quantum Information Theory

Mathematical Institute, University of Oxford

webpage

Thu, 31 Oct 2024

12:00 - 12:30
Lecture Room 6

Distributional Complexes in two and three dimensions

Ting Lin
(Peking University)
Abstract

In recent years, some progress has been made in the development of finite element complexes, particularly in the discretization of BGG complexes in two and three dimensions, including Hessian complexes, elasticity complexes, and divdiv complexes. In this talk, I will discuss distributional complexes in two and three dimensions. These complexes are simply constructed using geometric concepts such as vertices, edges, and faces, and they share the same cohomology as the complexes at the continuous level, which reflects that the discretization is structure preserving. The results can be regarded as a tensor generalization of the Whitney forms of the finite element exterior calculus. This talk is based on joint work with Snorre Christiansen (Oslo), Kaibo Hu (Edinburgh), and Qian Zhang (Michigan).

Thu, 31 Oct 2024

12:00 - 13:00
L3

Volcanic fissure localisation and lava delta formation: Modelling of volcanic flows undergoing rheological evolution

Jesse Taylor-West
(University of Bristol)
Abstract
In this talk, I will present two volcanologically motivated modelling problems.  In the first, I will detail how thermoviscous localisation of volcanic eruptions is influenced by the irregular geometry of natural volcanic fissures. Fissure eruptions typically start with the opening of a linear fissure that erupts along its entire length, following which activity localises to one or more isolated vents within a few hours or days. Previous work has proposed that localisation can arise through a thermoviscous fingering instability driven by the strongly temperature dependent viscosity of the rising magma. I will show that, even for relatively modest variations of the fissure width, a non-planar geometry supports strongly localised steady states, in which the wider parts of the fissure host faster, hotter flow, and the narrower parts of the fissure host slower, cooler flow. This geometrically-driven localisation is different from, and typically more potent than, the thermoviscous fingering localisation observed in planar geometries.  
 
The second problem concerns lava delta formation. A lava delta arises when a volcanic lava flow enters a body of water, extending the pre-eruption shoreline via the creation of new, flat land. A combination of cooling induced rheological changes and the reduction in gravitational driving forces controls the morphology and evolution of the delta. I will present shallow-layer continuum models for this process, highlighting how different modes of delta formation manifest in different late-time behaviours.
Wed, 30 Oct 2024
16:00
L6

Counting subgroups of surface groups

Sophie Wright
(University of Bristol)
Abstract

The fundamental group of a hyperbolic surface has an infinite number of rank k subgroups. What does it mean, therefore, to pick a 'random' subgroup of this type? In this talk, I will introduce a method for counting subgroups and discuss how counting allows us to study the properties of a random subgroup and its associated cover.

Tue, 29 Oct 2024
16:00
L6

"Musical chairs": dynamical aspects of rank-one non-normal deformations.

Guillaume Dubach
(Ecole Polytechnique (CMLS))
Abstract

We will present some of the remarkable properties of eigenvalue trajectories for rank-one perturbations of random matrices, with an emphasis on two models of particular interest, namely weakly non-Hermitian and weakly non-unitary matrices. In both cases, precise estimates can be obtained for the critical timescale at which an outlier can be observed with high probability. We will outline the proofs of these results and highlight their significance in connection with quantum chaotic scattering. (Based on joint works with L. Erdös and J. Reker)

Tue, 29 Oct 2024
16:00
C3

Semi-uniform stability of semigroups and their cogenerators

Andrew Pritchard
(University of Newcastle)
Abstract

The notion of semi-uniform stability of a strongly continuous semi-group refers to the stability of classical solutions of a linear evolution equation, and this has analogues with the classical Katznelson-Tzafriri theorem. The co-generator of a strongly continuous semigroup is a bounded linear operator that comes from a particular discrete approximation to the semigroup. After reviewing some background on (quantified) stability theory for semigroups and the Katznelson-Tzafriri theorem, I will present some results relating the stability of a strongly continuous semigroup with that of its cogenerator. This talk is based on joint work with David Seifert.

Tue, 29 Oct 2024
15:00
L6

Twisted conjugacy growth of virtually nilpotent groups

Alex Evetts
Abstract

The conjugacy growth function of a finitely generated group is a variation of the standard growth function, counting the number of conjugacy classes intersecting the n-ball in the Cayley graph. The asymptotic behaviour is not a commensurability invariant in general, but the conjugacy growth of finite extensions can be understood via the twisted conjugacy growth function, counting automorphism-twisted conjugacy classes. I will discuss what is known about the asymptotic and formal power series behaviour of (twisted) conjugacy growth, in particular some relatively recent results for certain groups of polynomial growth (i.e. virtually nilpotent groups).

Tue, 29 Oct 2024

14:00 - 15:00
C3

One, two, tree: counting trees in graphs and some applications

Karel Devriendt
(Mathematical Institute (University of Oxford))
Abstract

Kirchhoff's celebrated matrix tree theorem expresses the number of spanning trees of a graph as the maximal minor of the Laplacian matrix of the graph. In modern language, this determinantal counting formula reflects the fact that spanning trees form a regular matroid. In this talk, I will give a short historical overview of the tree-counting problem and a related quantity from electrical circuit theory: the effective resistance. I will describe a characterization of effective resistances in terms of a certain polytope and discuss some recent applications to discrete notions of curvature on graphs. More details can be found in the recent preprint: https://arxiv.org/abs/2410.07756

Tue, 29 Oct 2024

14:00 - 15:00
L4

Lower tails for triangle counts in the critical window

Matthew Jenssen
(King's College London)
Abstract

The classical lower-tail problem for triangles in random graphs asks the following: given $\eta\in[0,1)$, what is the probability that $G(n,p)$ contains at most $\eta$ times the expected number of triangles?  When $p=o(n^{-1/2})$ or $p = \omega(n^{-1/2})$ the asymptotics of the logarithm of this probability are known via Janson's inequality in the former case and regularity or container methods in the latter case.

We prove for the first time asymptotic formulas for the logarithm of the lower tail probability when $p=c n^{-1/2}$ for $c$ constant.  Our results apply for all $c$ when $\eta \ge 1/2$ and for $c$  small enough when $\eta < 1/2$.  For the special case $\eta=0$ of triangle-freeness, our results prove that a phase transition occurs as $c$ varies (in the sense of a non-analyticity of the rate function), while for $\eta \ge 1/2$ we prove that no phase transition occurs.

Our method involves ingredients from algorithms and statistical physics including rapid mixing of Markov chains and the cluster expansion.  We complement our asymptotic formulas with efficient algorithms to approximately sample from $G(n,p)$ conditioned on the lower tail event.

Joint work with Will Perkins, Aditya Potukuchi and Michael Simkin.

Tue, 29 Oct 2024

14:00 - 15:00
L6

Endomorphisms of Gelfand—Graev representations

Jack G Shotton
(University of Durham)
Abstract

Let G be a reductive group over a finite field F of characteristic p. I will present work with Tzu-Jan Li in which we determine the endomorphism algebra of the Gelfand-Graev representation of the finite group G(F) where the coefficients are taken to be l-adic integers, for l a good prime of G distinct from p. Our result can be viewed as a finite-field analogue of the local Langlands correspondence in families. 

Tue, 29 Oct 2024
13:00
L2

Fivebrane Stars

Yoav Zigdon
(Cambridge )
Abstract
The low energy limit of string theory contains solutions of large redshift, either near an event horizon or extended objects. Alday, de Boer, and Messamah compared the massless BTZ black hole to the ensemble average of horizonless BPS solutions with the same charges and found them to differ. I will show that averaging gives rise to a spherically symmetric and horizon-free "fivebrane star" solution by employing an effective string description for Type IIA NS5-branes. By further including internal excitations of the extended objects in this description, we obtain solutions of smaller sizes and greater redshifts relative to those with purely transverse excitations, thereby approaching the black hole phase.


 

Mon, 28 Oct 2024
16:30
L4

Lipschitz Regularity of harmonic maps from the Heisenberg group into CAT(0) spaces

Renan Assimos
(Leibniz Universität Hannover)
Abstract

We prove the local Lipschitz continuity of energy minimizing harmonic maps between singular spaces, more specifically from the n-dimensional Heisenberg group into CAT(0) spaces. The present result paves the way for a general regularity theory of sub-elliptic harmonic maps, providing a versatile approach applicable beyond the Heisenberg group.  Joint work with Yaoting Gui and Jürgen Jost.

Mon, 28 Oct 2024
16:00
C3

An introduction to modularity lifting

Dmitri Whitmore
(University of Cambridge)
Abstract
The (global) Langlands programme is a vast generalization of classical reciprocity laws. Roughly, it predicts a correspondence between:
1) modular forms (and their generalizations, automorphic forms)
2) representations of the Galois group of a number field.
While many constructions of Galois representations from automorphic forms exist, the converse direction is often harder to establish. The main tools to do so are modularity lifting theorems and are proved via the Taylor-Wiles method, originating from Wiles' proof of Fermat's Last Theorem.
 
I will introduce these ideas and their applications, focusing particularly on the problem of modularity of elliptic curves. I will then briefly discuss a generalization of the Taylor-Wiles method developed in my thesis which led to new modularity theorems in the setting of quadratic extensions of totally real fields by building of work of Boxer-Calegari-Gee-Pilloni.
Mon, 28 Oct 2024
15:30
L3

Higher Order Lipschitz Functions in Data Science

Dr Andrew Mcleod
(Mathematical Institute)
Abstract

The notion of Lip(gamma) Functions, for a parameter gamma > 0, introduced by Stein in the 1970s (building on earlier work of Whitney) is a notion of smoothness that is well-defined on arbitrary closed subsets (including, in particular, finite subsets) that is instrumental in the area of Rough Path Theory initiated by Lyons and central in recent works of Fefferman. Lip(gamma) functions provide a higher order notion of Lipschitz regularity that is well-defined on arbitrary closed subsets, and interacts well with the more classical notion of smoothness on open subsets. In this talk we will survey the historical development of Lip(gamma) functions and illustrate some fundamental properties that make them an attractive class of function to work with from a machine learning perspective. In particular, models learnt within the class of Lip(gamma) functions are well-suited for both inference on new unseen input data, and for allowing cost-effective inference via the use of sparse approximations found via interpolation-based reduction techniques. Parts of this talk will be based upon the works https://arxiv.org/abs/2404.06849 and https://arxiv.org/abs/2406.03232.

Mon, 28 Oct 2024
15:30
L5

Poincaré duality fibrations and Kontsevich's Lie graph complex

Alexander Berglund
(Stockholm University)
Abstract

I will talk about certain higher algebraic structure, governed by Kontsevich's Lie graph complex, that can be associated to an oriented fibration with Poincaré duality fiber. We construct a generalized fiber integration map associated to each Lie graph homology class and the main result is that this gives a faithful representation of graph homology. I will discuss how this leads to new possible interpretations of Lie graph homology classes as obstructions to, on one hand, smoothness of Poincaré duality fibrations, and, on the other hand, the existence of Poincaré duality algebra resolutions of the cochains of the total space as a dg module over the cochains of the base space.

Mon, 28 Oct 2024
14:15
L4

On the Geometric Langlands Program

Dario Beraldo
(University College London)
Abstract

I will discuss how some ideas from Geometric Langlands can be used to obtain new results in birational geometry and on the topology of algebraic varieties.

Fri, 25 Oct 2024

14:00 - 15:00
L1

How to Write a Good Maths Solution

Dr Luciana Basualdo Bonatto
Abstract

In this interactive workshop, we'll discuss what mathematicians are looking for in written solutions. How can you set out your ideas clearly, and what are the standard mathematical conventions? Please bring a pen or pencil!

This session is likely to be most relevant for first-year undergraduates, but all are welcome.

Fri, 25 Oct 2024
12:00
L2

Twisted eleven-dimensional supergravity and exceptional simple infinite dimensional super-Lie algebras

Surya Raghavendran
(Edinburgh)
Abstract

I will describe a holomorphic-topological field theory in eleven-dimensions which captures a 1/16-BPS subsector of eleven-dimensional supergravity. Remarkably, asymptotic symmetries of the theory on flat space and on twisted versions of the AdS_4 x S^7 and AdS_7 x S^4 backgrounds recover three of the five infinite dimensional exceptional simple super-Lie algebras. I will discuss some applications of this fact, including character formulae for indices counting multigravitons and the contours of a program to holographically describe 1/16-BPS local operators in the 6d (2,0) SCFTs of type A_{N-1}. This talk is based on joint work, much in progress, with Fabian Hahner, Ingmar Saberi, and Brian Williams.

Fri, 25 Oct 2024

12:00 - 13:00
Common Room

Junior Algebra Social

Abstract

The Junior Algebra and Representation Theory Seminar will kick-off the start of the academic year with a social event in the common room. Come to catch up with your fellow students and maybe play a board game or two. Afterwards we'll have lunch together.

Fri, 25 Oct 2024

11:00 - 12:00
L5

Engineering Biology for Robust Turing Patterns

Prof Robert Endres
(Biological Physics Group Imperial College London)
Abstract

Turing patterns have long been proposed as a mechanism for spatial organization in biology, but their relevance remains controversial due to the stringent fine-tuning often required. In this talk, I will present recent efforts to engineer synthetic Turing systems in bacterial colonies, highlighting both successes and limitations. While our three-node gene circuit generates patterns, challenges remain in extending these results to broader contexts. Additionally, I will discuss our exploration of machine learning methods to address the inverse problem of pattern formation, helping the design process down the road. This work addresses the ongoing task in translating theory into robust biological applications, offering insights into both current capabilities and future directions.

Thu, 24 Oct 2024
18:00
Citi Stirling Square, London, SW1Y 5AD

Backtesting with correlated data

Nikolai Nowaczyk
(NatWest Group)
Abstract

The important problem of backtesting financial models over long horizons inevitably leads to overlapping returns, giving rise to correlated samples. We propose a new method of dealing with this problem by decorrelation and show how this increases the discriminatory power of the resulting tests.


About the speaker
Nikolai Nowaczyk is a Risk Management & AI consultant who has advised multiple institutional clients in  projects around counterparty credit risk and xVA as well as data science and machine learning. 
Nikolai holds a PhD in mathematics from the University of Regensburg and has been an Academic Visitor at Imperial College London.
 

Registration for in-person attendance is required in advance.

Register here.

Thu, 24 Oct 2024
17:00
L3

Generic central sequence properties in II$_1$ factors

Jenny Pi
(University of Oxford)
Abstract

Von Neumann algebras which are not matrix algebras, yet still possess a unique trace, form a basic class called II$_1$ factors. The set of asymptotically commuting elements (or, the relative commutant of the algebra within its own ultrapower), dubbed the central sequence algebra, can take many different forms. In this talk, we discuss an elementary class of II$_1$ factors whose central sequence algebra is again a II$_1$ factor. We show that the class of infinitely generic II$_1$ factors possess this property, and ask some related questions about properties of other existentially closed II$_1$ factors. This is based on joint work with Isaac Goldbring, David Jekel, and Srivatsav Kunnawalkam Elayavalli.

Thu, 24 Oct 2024
16:00
L6

COW SEMINAR: Derived symmetries for crepant resolutions of hypersurfaces

Will Donovan
(Tsinghua)
Abstract

Given a singularity with a crepant resolution, a symmetry of the derived 
category of coherent sheaves on the resolution may often be constructed 
using the formalism of spherical functors. I will introduce this, and 
new work (arXiv:2409.19555) on general constructions of such symmetries 
for hypersurface singularities. This builds on previous results with 
Segal, and is inspired by work of Bodzenta-Bondal.

Thu, 24 Oct 2024
16:00
Lecture Room 3

Non-generic components of the Emerton-Gee stack for $\mathrm{GL}_{2}$

Kalyani Kansal
(Imperial College London)
Abstract

Let $K$ be an unramified extension of $\mathbb{Q}_p$ for a prime $p > 3$. The reduced part of the Emerton-Gee stack for $\mathrm{GL}_{2}$ can be viewed as parameterizing two-dimensional mod $p$ Galois representations of the absolute Galois group of $K$. In this talk, we will consider the extremely non-generic irreducible components of this reduced part and see precisely which ones are smooth or normal, and which have Gorenstein normalizations. We will see that the normalizations of the irreducible components admit smooth-local covers by resolution-rational schemes. We will also determine the singular loci on the components, and use these results to update expectations about the conjectural categorical $p$-adic Langlands correspondence. This is based on recent joint work with Ben Savoie.

Thu, 24 Oct 2024
16:00
C3

Roe type algebras and their isomorphisms

Alessandro Vignati
(Université de Paris Cité)
Abstract

Roe type algebras are operator algebras designed to catch the large-scale behaviour of metric spaces. This talk focuses on the following question: if two Roe type algebras associated to spaces (X,d_X) and (Y,d_Y) are isomorphic, how similar are X and Y? We provide positive results proved in the last 5 years, and, if time allows it, we show that sometimes answers to this question are subject to set theoretic considerations

Thu, 24 Oct 2024
14:30
L6

COW SEMINAR: Homological mirror symmetry for K3 surfaces

Ailsa Keating
(Cambridge)
Abstract

Joint work with Paul Hacking (U Mass Amherst). We first explain how to 
prove homological mirror symmetry for a maximal normal crossing 
Calabi-Yau surface Y with split mixed Hodge structure. This includes the 
case when Y is a type III K3 surface, in which case this is used to 
prove a conjecture of Lekili-Ueda. We then explain how to build on this 
to prove an HMS statement for K3 surfaces. On the symplectic side, we 
have any K3 surface (X, ω) with ω integral Kaehler; on the algebraic 
side, we get a K3 surface Y with Picard rank 19. The talk will aim to be 
accessible to audience members with a wide range of mirror symmetric 
backgrounds.

Thu, 24 Oct 2024

14:00 - 15:00
(This talk is hosted by Rutherford Appleton Laboratory)

Machine learning in solution of inverse problems: subjective perspective

Marta Betcke
(University College London)
Abstract

Following the 2012 breakthrough in deep learning for classification and visions problems, the last decade has seen tremendous raise of interest in machine learning in a wider mathematical research community from foundational research through field specific analysis to applications. 

As data is at the core of any inverse problem, it was a natural direction for the field to investigate how machine learning could aid various aspects of inversion yielding numerous approaches from somewhat ad-hoc but very effective like learned unrolled methods to provably convergent learned regularisers with everything in between. In this talk I will review some on these developments through a lens of the research of our group.   

 

Thu, 24 Oct 2024
13:30
N3.12

Feynman Integrals and Hopf Algebras

Adam Kmec
Abstract

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 24 Oct 2024
13:00
L6

COW SEMINAR: Ball quotients and moduli spaces

Klaus Hulek
(Hannover)
Abstract

A number of moduli problems are, via Hodge theory, closely related to 
ball quotients. In this situation there is often a choice of possible 
compactifications such as the GIT compactification´and its Kirwan 
blow-up or the Baily-Borel compactification and the toroidal 
compactificatikon. The relationship between these compactifications is 
subtle and often geometrically interesting. In this talk I will discuss 
several cases, including cubic surfaces and threefolds and 
Deligne-Mostow varieties. This discussion links several areas such as 
birational geometry, moduli spaces of pointed curves, modular forms and 
derived geometry. This talk is based on joint work with S. 
Casalaina-Martin, S. Grushevsky, S. Kondo, R. Laza and Y. Maeda.

Thu, 24 Oct 2024
12:00
C5

A splitting theorem for manifolds with a convex boundary component.

Alessandro Cucinotta
(University of Oxford)
Abstract

The celebrated Splitting Theorem by Cheeger-Gromoll states that a manifold with non-negative Ricci curvature which contains a line is isometric to a product, where one of the factors is the real line. A related result was later proved by Kasue. He showed that a manifold with non-negative Ricci curvature and two mean convex boundary components, one of which is compact, is also isometric to a product. In this talk, I will present a variant of Kasue’s result based on joint work with Andrea Mondino. We consider manifolds with non-negative Ricci curvature and disconnected mean convex boundary. We show that if one boundary component is parabolic and convex, then the manifold is a product, where one of the factors is an interval of the real line. The result is an application of recently developed tools in synthetic geometry and exploits the interplay between Ricci curvature and optimal transport.

Thu, 24 Oct 2024

12:00 - 12:30
Lecture Room 6

Multirevolution integrators for stochastic multiscale dynamics with fast stochastic oscillations

Adrien Laurent
(INRIA Rennes)
Abstract

We introduce a new methodology based on the multirevolution idea for constructing integrators for stochastic differential equations in the situation where the fast oscillations themselves are driven by a Stratonovich noise. Applications include in particular highly-oscillatory Kubo oscillators and spatial discretizations of the nonlinear Schrödinger equation with fast white noise dispersion. We construct a method of weak order two with computational cost and accuracy both independent of the stiffness of the oscillations. A geometric modification that conserves exactly quadratic invariants is also presented. If time allows, we will discuss ongoing work on uniformly accurate methods for such systems. This is a joint work with Gilles Vilmart.

Thu, 24 Oct 2024

12:00 - 13:00
L3

Effective elasticity and dynamics of helical filaments under distributed loads

Michael Gomez
(Kings College London)
Abstract

Slender elastic filaments with intrinsic helical geometry are encountered in a wide range of physical and biological settings, ranging from coil springs in engineering to bacteria flagellar filaments. The equilibrium configurations of helical filaments under a variety of loading types have been well studied in the framework of the Kirchhoff rod equations. These equations are geometrically nonlinear and so can account for large, global displacements of the rod. This geometric nonlinearity also makes a mathematical analysis of the rod equations extremely difficult, so that much is still unknown about the dynamic behaviour of helical rods under external loading.

An important class of simplified models consists of 'equivalent-column' theories. These model the helical filament as a naturally-straight beam (aligned with the helix axis) for which the extensional and torsional deformations are coupled. Such theories have long been used in engineering to describe the free vibrations of helical coil springs, though their validity remains unclear, particularly when distributed forces and moments are present. In this talk, we show how such an effective theory can be derived systematically from the Kirchhoff rod equations using the method of multiple scales. Importantly, our analysis is asymptotically exact in the small-wavelength limit and can account for large, unsteady displacements. We then illustrate our theory with two loading scenarios: (i) a heavy helical rod deforming under its own weight; and (ii) axial rotation (twirling) in viscous fluid, which may be considered as a simple model for a bacteria flagellar filament. More broadly, our analysis provides a framework to develop reduced models of helical rods in a wide variety of physical and biological settings, as well as yielding analytical insight into their tensile instabilities.

Wed, 23 Oct 2024
16:00
L6

Coherence in Dimension 2

Sam Fisher
(University of Oxford)
Abstract

A group is coherent if all its finitely generated subgroups are finitely presented. Aside from some easy cases, it appears that coherence is a phenomenon that occurs only among groups of cohomological dimension 2. In this talk, we will give many examples of coherent and incoherent groups, discuss techniques to prove a group is coherent, and mention some open problems in the area.

Wed, 23 Oct 2024
11:00
L4

Weak coupling limit for polynomial stochastic Burgers equations in $2d$

Da Li
(Mathematical Institute)
Abstract

We explore the weak coupling limit for stochastic Burgers type equation in critical dimension, and show that it is given by a Gaussian stochastic heat equation, with renormalised coefficient depending only on the second order Hermite polynomial of the nonlinearity. We use the approach of Cannizzaro, Gubinelli and Toninelli (2024), who treat the case of quadratic nonlinearities, and we extend it to polynomial nonlinearities. In that sense, we extend the weak universality of the KPZ equation shown by Hairer and Quastel (2018) to the two dimensional generalized stochastic Burgers equation. A key new ingredient is the graph notation for the generator. This enables us to obtain uniform estimates for the generator. This is joint work with Nicolas Perkowski.

Tue, 22 Oct 2024
16:00
C3

A unified approach for classifying simple nuclear C*-algebras

Ben Bouwen
(University of Southern Denmark)
Abstract

The classification program of C*-algebras aims to classify simple, separable, nuclear C*-algebras by their K-theory and traces, inspired by analogous results obtained for von Neumann algebras. A landmark result in this project was obtained in 2015, building upon the work of numerous researchers over the past 20 years. More recently, Carrión, Gabe, Schafhauser, Tikuisis, and White developed a new, more abstract approach to classification, which connects more explicitly to the von Neumann algebraic classification results. In their paper, they carry out this approach in the stably finite setting, while for the purely infinite case, they refer to the original result obtained by Kirchberg and Phillips. In this talk, I provide an overview of how the new approach can be adapted to classify purely infinite C*-algebras, recovering the Kirchberg-Phillips classification by K-theory and obtaining Kirchberg's absorption theorems as corollaries of classification rather than (pivotal) ingredients. This is joint work with Jamie Gabe.

Tue, 22 Oct 2024
16:00
L6

Simultaneous extreme values of zeta and L-functions

Winston Heap
(Max Planck Institute Bonn)
Abstract
I will discuss a recent joint work with Junxian Li which examines joint distributional properties of L-functions, in particular, their extreme values. Here, it is not clear if the analogy with random matrix theory persists, although I will discuss some speculations. Using a modification of the resonance method we demonstrate the simultaneous occurrence of extreme values of L-functions on the critical line. The method extends to other families and can be used to show both simultaneous large and small values.
 



 

Tue, 22 Oct 2024
15:00
L6

Universal localizations, Atiyah conjectures and graphs of groups

Pablo Sanchez Peralta
Abstract

The study of the rationality of the $L^2$-Betti numbers of a countable group has led to the development of a rich theory in $L^2$-homology with deep implications in structural properties of the groups. For decades almost nothing has been known about the general question of whether the strong Atiyah conjecture passes to free products of groups or not. In this talk, we will confirm that the strong and algebraic Atiyah conjectures are stable under the graph of groups construction provided that the edge groups are finite. Moreover, we shall see that in this case the $\ast$-regular closure of the group algebra is precisely a universal localization of the associated graph of rings

Tue, 22 Oct 2024

14:00 - 15:00
L5

Maria Pope: Uncovering Higher-Order Interactions in the Cortex: Applications of Multivariate Information Theory

Maria Pope
(Indiana University)
Abstract

Creating networks of statistical dependencies between brain regions is a powerful tool in neuroscience that has resulted in many new insights and clinical applications. However, recent interest in higher-order interactions has highlighted the need to address beyond-pairwise dependencies in brain activity. Multivariate information theory is one tool for identifying these interactions and is unique in its ability to distinguish between two qualitatively different modes of higher-order interactions: synergy and redundancy. I will present results from applying the O-information, the partial entropy decomposition, and the local O-information to resting state fMRI data. Each of these metrics indicate that higher-order interactions are widespread in the cortex, and further that they reveal different patterns of statistical dependencies than those accessible through pairwise methods alone. We find that highly synergistic subsystems typically sit between canonical functional networks and incorporate brain regions from several of these systems. Additionally, canonical networks as well as the interactions captured by pairwise functional connectivity analyses, are strongly redundancy-dominated. Finally, redundancy/synergy dominance varies in both space and time throughout an fMRI scan with notable recurrence of sets of brain regions engaging synergistically. As a whole, I will argue that higher-order interactions in the brain are an under-explored space that, made accessible with the tools of multivariate information theory, may offer novel insights.

Tue, 22 Oct 2024

14:00 - 15:00
L4

Exponential Improvement for Multicolour Ramsey

Eoin Hurley
(University of Oxford)
Abstract

We give an exponential improvement on the upper bound for the $r$-colour diagonal Ramsey number for all $r$. The proof relies on geometric insights and offers a simplified proof in the case of $r=2$.

Joint Work with: Paul Ballister, Béla Bollobás, Marcelo Campos, Simon Griffiths, Rob Morris, Julian Sahasrabudhe and Marius Tiba.

Tue, 22 Oct 2024

14:00 - 15:00
L6

A recursive formula for plethysm coefficients and some applications

Stacey Law
(University of Birmingham)
Abstract

Plethysms lie at the intersection of representation theory and algebraic combinatorics. We give a recursive formula for a family of plethysm coefficients encompassing those involved in Foulkes' Conjecture. We also describe some applications, such as to the stability of plethysm coefficients and Sylow branching coefficients for symmetric groups. This is joint work with Y. Okitani.

Tue, 22 Oct 2024
13:00
L2

Heterotic islands

Ida Zadeh
(Southampton)
Abstract

In this talk I will discuss asymmetric orbifolds and will focus on their application to toroidal compactifications of heterotic string theory. I will consider theories in 6 and 4 dimensions with 16 supercharges and reduced rank. I will present a novel formalism, based on the Leech lattice, to construct ‘islands’ without vector multiplets.

Mon, 21 Oct 2024
16:30
L4

Thomas-Fermi type models of external charge screening in graphene

Vitaly Moroz
(Swansea University)
Abstract

We propose a density functional theory of Thomas-Fermi-(von Weizsacker) type to describe the response of a single layer of graphene to a charge some distance away from the layer. We formulate a variational setting in which the proposed energy functional admits minimizers. We further provide conditions under which those minimizers are unique. The associated Euler-Lagrange equation for the charge density is also obtained, and uniqueness, regularity and decay of the minimizers are proved under general conditions. For a class of special potentials, we also establish a precise universal asymptotic decay rate, as well as an exact charge cancellation by the graphene sheet. In addition, we discuss the existence of nodal minimizers which leads to multiple local minimizers in the TFW model. This is a joint work with Cyrill Muratov (University of Pisa).

Mon, 21 Oct 2024
16:00
C3

Monochromatic non-commuting products

Matt Bowen
(University of Oxford)
Abstract

We show that any finite coloring of an amenable group contains 'many' monochromatic sets of the form $\{x,y,xy,yx\},$ and natural extensions with more variables.  This gives the first combinatorial proof and extensions of Bergelson and McCutcheon's non-commutative Schur theorem.  Our main new tool is the introduction of what we call `quasirandom colorings,' a condition that is automatically satisfied by colorings of quasirandom groups, and a reduction to this case.