$\chi$-Systems for Correlation Functions
Abstract
Virtual Anglo-Saxons. Agent-based modelling in archaeology and palaeodemography
Abstract
The University of Oxford’s modelling4all software is a wonderful tool to simulate early medieval populations and their cemeteries in order to evaluate the influence of palaeodemographic variables, such as mortality, fertility, catastrophic events and disease on settlement dispersal. In my DPhil project I will study archaeological sites in Anglo-Saxon England and the German south-west in a comparative approach. The two regions have interesting similarities in their early medieval settlement pattern and include some of the first sites where both cemeteries and settlements were completely excavated.
An important discovery in bioarchaeology is that an excavated cemetery is not a straightforward representation of the living population. Preservation issues and the limitations of age and sex estimation methods using skeletal material must be considered. But also the statistical procedures to calculate the palaeodemographic characteristics of archaeological populations are procrustean. Agent-based models can help archaeologists to virtually bridge the chasm between the excavated dead populations and their living counterparts in which we are really interested in.
This approach leads very far away from the archaeologist’s methods and ways of thinking and the major challenge therefore is to balance innovative ideas with practicability and tangibility.
Some of the problems for the workshop are:
1.) Finding the best fitting virtual living populations for the excavated cemeteries
2.) Sensitivity analyses of palaeodemographic variables
3.) General methodologies to evaluate the outcome of agent based models
4.) Present data in a way that is both statistically correct and up to date & clear for archaeologists like me
5.) Explore how to include analytical procedures in the model to present the archaeological community with a user-friendly and not necessarily overwhelming toolkit
A non-desarguesian projective plane of analytic origin
Abstract
avoiding a direct use of Hrushovski's construction. Instead we make use of the field of complex numbers with a holomorphic function (Liouville function) which is an omega-stable structure by results of A.Wilkie and P.Koiran. We first find a pseudo-plane interpretable in the above analytic structure and then "collapse" the pseudo-plane to a projective plane applying a modification of Hrushovski's mu-function.
An Energy model for the mechanically driven unfolding of titin macromolecules
Abstract
We propose a model to reproduce qualitatively and quantitatively the experimental behavior obtained by the AFM techniques for the titin. Via an energetic based minimization approach we are able to deduce a simple analytical formulations for the description of the mechanical behavior of multidomain proteins, giving a physically base description of the unfolding mechanism. We also point out that our model can be inscribed in the led of the pseudo-elastic variational damage model with internal variable and fracture energy criteria of the continuum mechanics. The proposed model permits simple analytical calculations and
to reproduce hard-device experimental AFM procedures. The proposed model also permits the continuum limit approximation which maybe useful to the development of a three-dimensional multiscale constitutive model for biological tissues.
Teichmüller Curves in TQFT
Abstract
In this talk we show how Teichmüller curves can be used to compute
quantum invariants of certain Pseudo-Anasov mapping tori. This involves
computing monodromy of the Hitchin connection along closed geodesics of
the Teichmüller curve using iterated integrals. We will mainly focus on
the well known Teichmüller curve generated by a pair of regular
pentagons. This is joint work with J. E. Andersen.
Cherednik algebras for curves and deformed preprojective algebras
Abstract
To any complex smooth variety Y with an action of a finite group G, Etingof associates a global Cherednik algebra. The usual rational Cherednik algebra corresponds to the case of Y= C^n and a finite Coxeter group G
Domain decomposition for total variation regularisation and applications
Abstract
Domain decomposition methods were introduced as techniques for solving partial differential equations based on a decomposition of the spatial domain of the problem into several subdomains. The initial equation restricted to the subdomains defines a sequence of new local problems. The main goal is to solve the initial equation via the solution of the local problems. This procedure induces a dimension reduction which is the major responsible of the success of such a method. Indeed, one of the principal motivations is the formulation of solvers which can be easily parallelized.
In this presentation we shall develop a domain decomposition algorithm to the minimization of functionals with total variation constraints. In this case the interesting solutions may be discontinuous, e.g., along curves in 2D. These discontinuities may cross the interfaces of the domain decomposition patches. Hence, the crucial difficulty is the correct treatment of interfaces, with the preservation of crossing discontinuities and the correct matching where the solution is continuous instead. I will present our domain decomposition strategy, including convergence results for the algorithm and numerical examples for its application in image inpainting and magnetic resonance imaging.
Self referential options
Abstract
A number of pricing models for electricity and carbon credit pricing involve nonlinear dependencies between two, or more, of the processes involved; for example, the models developed by Schwarz and Howison. The consequences of these nonlinearities are not well understood.
In this talk I will discuss some much simpler models, namely options whose values are defined self-referentially, which have been looked at in order to better understand the effects of these non-linear dependencies.
12:00
Bifurcation for some non-Fréchet differentiable problems
16:00
Magnus QI: the motion picture, featuring the Magnus embedding
Abstract
Let F be a free group, and N a normal subgroup of F with derived subgroup N'. The Magnus embedding gives a way of seeing F/N' as a subgroup of a wreath product of a free abelian group over over F/N. The aim is to show that the Magnus embedding is a quasi-isometric embedding (hence "Q.I." in the title). For this I will use an alternative geometric definition of the embedding (hence "picture"), which I will show is equivalent to the definition which uses Fox calculus. Please note that we will assume no prior knowledge of calculus.
17:00
"Nielsen equivalence and groups whose profinite genus is infinite"
Abstract
In our 2004 paper, Fritz Grunewald and I constructed the first
pairs of finitely presented, residually finite groups $u: P\to G$
such that $P$ is not isomorphic to $G$ but the map that $u$ induces on
profinite completions is an isomorphism. We were unable to determine if
there might exist finitely presented, residually finite groups $G$ that
with infinitely many non-isomorphic finitely presented subgroups $u_n:
P_n\to G$ such that $u_n$ induces a profinite isomorphism. I shall
discuss how two recent advances in geometric group theory can be used in
combination with classical work on Nielsen equivalence to settle this
question.
14:30
"Interpolation, box splines, and lattice points in zonotopes"
Abstract
Given a finite list of vectors X in $\R^d$, one can define the box spline $B_X$. Box splines are piecewise polynomial functions that are used in approximation theory. They are also interesting from a combinatorial point of view and many of their properties solely depend on the structure of the matroid defined by the list X. The support of the box spline is a certain polytope called zonotope Z(X). We will show that if the list X is totally unimodular, any real-valued function defined on the set of lattice points in the interior of Z(X) can be extended to a function on Z(X) of the form $p(D)B_X$ in a unique way, where p(D) is a differential operator that is contained in the so-called internal P-space. This was conjectured by Olga Holtz and Amos Ron. The talk will focus on combinatorial aspects and all objects mentioned above will be defined. (arXiv:1211.1187)
Fluctuation analysis for the loss from default
Abstract
We analyze the fluctuation of the loss from default around its large portfolio limit in a class of reduced-form models of correlated default timing. We prove a weak convergence result for the fluctuation process and use it for developing a conditionally Gaussian approximation to the loss distribution. Numerical results illustrate the accuracy of the approximation.
This is joint work with Kostas Spiliopoulos (Boston University) and Justin Sirignano (Stanford).
14:15
The use of finite element methods and grid refinement in geophysical modelling can be less painful than expected
Generic string/M theory Predictions for Particle Physics and Dark Matter
11:00
A variational time discretization for the compressible Euler equations
Finding Short Conjugators in Wreath Products and Free Solvable Groups
Abstract
The question of estimating the length of short conjugators in between
elements in a group could be described as an effective version of the
conjugacy problem. Given a finitely generated group $G$ with word metric
$d$, one can ask whether there is a function $f$ such that two elements
$u,v$ in $G$ are conjugate if and only if there exists a conjugator $g$ such
that $d(1,g) \leq f(d(1,u)+d(1,v))$. We investigate this problem in free
solvable groups, showing that f may be cubic. To do this we use the Magnus
embedding, which allows us to see a free solvable group as a subgroup of a
particular wreath product. This makes it helpful to understand conjugacy
length in wreath products as well as metric properties of the Magnus
embedding.
Strong and weak solutions to stochastic Landau-Lifshitz equations
Abstract
I will speak about the of weak (and the existence and uniqueness of strong solutions) to the stochastic
Landau-Lifshitz equations for multi (one)-dimensional spatial domains. I will also describe the corresponding Large Deviations principle and it's applications to a ferromagnetic wire. The talk is based on a joint works with B. Goldys and T. Jegaraj.
14:15
Tropical geometry and scheme theory
Abstract
Motived by the desire to study geometry over the 'field with one element', in the past decade several authors have constructed extensions of scheme theory to geometries locally modelled on algebraic objects more general than rings. Semi-ring schemes exist in all of these theories, and it has been suggested that schemes over the semi-ring T of tropical numbers should describe the polyhedral objects of tropical geometry. We show that this is indeed the case by lifting Payne's tropicalization functor for subvarieties of toric varieties to the category of T-schemes. There are many applications such as tropical Hilbert schemes, tropical sheaf theory, and group actions and quotients in tropical geometry. This project is joint work with N. Giansiracusa (Berkeley).
Google maps and improper Poisson line processes
Abstract
I will report on joint work in progress with David Aldous, concerning a curious random metric space on the plane which can be constructed with the help of an improper Poisson line process.
Holomorphic blocks in 3 dimensions
Abstract
Efficient Discretization of Stochastic Integrals
Abstract
Abstract: Sharp asymptotic lower bounds of the expected quadratic
variation of discretization error in stochastic integration are given.
The theory relies on inequalities for the kurtosis and skewness of a
general random variable which are themselves seemingly new.
Asymptotically efficient schemes which attain the lower bounds are
constructed explicitly. The result is directly applicable to practical
hedging problem in mathematical finance; it gives an asymptotically
optimal way to choose rebalancing dates and portofolios with respect
to transaction costs. The asymptotically efficient strategies in fact
reflect the structure of transaction costs. In particular a specific
biased rebalancing scheme is shown to be superior to unbiased schemes
if transaction costs follow a convex model. The problem is discussed
also in terms of the exponential utility maximization.
Cruising the Caribbean, coring the ocean and constructing similarity solutions for turbidity currents
Abstract
Turbidity currents - submarine flows of sediment - are capable of transporting particulate material over large distance. However direct observations of them are extremely rare and much is inferred from the deposits they leave behind, even though the characteristics of their source are often not known. The submarine flows of volcanic ash from the Soufriere Hills Volcano, Monsterrat provide a unique opportunity to study a particle-driven flow and the deposit it forms, because the details of the source are relatively well constrained and through ocean drilling, the deposit is well sampled.
We have formed simple mathematical models of this motion that capture ash transport and deposit. Our description brings out two dynamical features that strongly influence the motion and which have previously often been neglected, namely mixing between the particulate flow and the oceanic water and the distribution of sizes suspended by the flow. We show how, in even simple situations, these processes alter our views of how these currents propagate.
Energy driven pattern formation in a non-local Ginzburg-Landau/Cahn-Hilliard energy
Abstract
Notice that the time is 12:30, not 12:00!
\newline
\vskip\baselineskip
The following is joint work with Sylvia Serfaty and Cyrill Muratov.
We study the asymptotic behavior of the screened sharp interface
Ohta-Kawasaki energy in dimension 2 using the framework of Γ-convergence.
In that model, two phases appear, and they interact via a nonlocal Coulomb
type energy. We focus on the regime where one of the phases has very small
volume fraction, thus creating ``droplets" of that phase in a sea of the
other phase. We consider perturbations to the critical volume fraction
where droplets first appear, show the number of droplets increases
monotonically with respect to the perturbation factor, and describe their
arrangement in all regimes, whether their number is bounded or unbounded.
When their number is unbounded, the most interesting case we compute the
Γ limit of the `zeroth' order energy and yield averaged information for
almost minimizers, namely that the density of droplets should be uniform.
We then go to the next order, and derive a next order Γ-limit energy,
which is exactly the ``Coulombian renormalized energy W" introduced in the
work of Sandier/Serfaty, and obtained there as a limiting interaction
energy for vortices in Ginzburg-Landau. The derivation is based on their
abstract scheme, that serves to obtain lower bounds for 2-scale energies
and express them through some probabilities on patterns via the
multiparameter ergodic theorem. Without thus appealing at all to the
Euler-Lagrange equation, we establish here for all configurations which
have ``almost minimal energy," the asymptotic roundness and radius of the
droplets as done by Muratov, and the fact that they asymptotically shrink
to points whose arrangement should minimize the renormalized energy W, in
some averaged sense. This leads to expecting to see hexagonal lattices of
droplets.
Time-To-Go Estimation
Abstract
The task is to estimate approach time (time-to-go (TTG)) of non-ballistic threats (e.g. missiles) using passive infrared imagery captured from a sensor on the target platform (e.g. a helicopter). The threat information available in a frame of data is angular position and signal amplitude.
A Kalman filter approach is presented that is applied to example amplitude data to estimate TTG. Angular information alone is not sufficient to allow analysis of missile guidance dynamics to provide a TTG estimate. Detection of the launch is required as is additional information in the form of a terrain database to determine initial range. Parameters that relate to missile dynamics might include proportional navigation constant and motor thrust. Differences between actual angular position observations and modelled values can beused to form an estimator for the parameter set and thence to the TTG.
The question posed here is, "how can signal amplitude information be employed to establish observability in a state-estimation-based model of the angular data to improve TTG estimate performance without any other source of range information?"
Quantum representations and their algebraic properties
Abstract
In this part, I will redefine the
quantum representations for $G = SU(2)$ making no mention of flat
connections at all, instead appealing to a purely combinatorial
construction using the knot theory of the Jones polynomial.
Using these, I will discuss some of the properties of the
representations, their strengths and their shortcomings. One of their
main properties, conjectured by Vladimir Turaev and proved by Jørgen
Ellegaard Andersen, is that the collection of the representations
forms an infinite-dimensional faithful representation. As it is still an
open question whether or not mapping class groups admit faithful
finite-dimensional representations, it becomes natural to consider the
kernels of the individual representations. Furthermore,
I will hopefully discuss Andersen's proof that mapping class groups of
closed surfaces do not have Kazhdan's Property (T), which makes
essential use of quantum representations.
Multi-Component Ultracold Quantum Gases: Themes from Condensed Matter Physics and Beyond
Abstract
Ultracold atomic gases have recently proven to be enormously rich
systems from the perspective of a condensed matter physicist. With
the advent of optical lattices, such systems can now realise idealised
model Hamiltonians used to investigate strongly correlated materials.
Conversely, ultracold atomic gases can exhibit quantum phases and
dynamics with no counterpart in the solid state due to their extra
degrees of freedom and unique environments virtually free of
dissipation. In this talk, I will discuss examples of such behaviour
arising from spinor degrees of freedom on which my recent research has
focused. Examples will include bosons with artificially induced
spin-orbit coupling and the non-equilibrium dynamics of spinor
condensates.
Shimura Decomposition and Tunnell-like formulae.
Abstract
Let k be an odd integer and N be a positive integer divisible by 4. Let g be a newform of weight k - 1, level dividing N/2 and trivial character. We give an explicit algorithm for computing the space of cusp forms of weight k/2 that are 'Shimura-equivalent' to g. Applying Waldspurger's theorem to this space allows us to express the critical values of the L-functions of twists of g in terms of the coefficients of modular forms of half-integral weight. Following Tunnell, this often allows us to give a criterion for the n-th twist of an elliptic curve to have positive rank in terms of the number of representations of certain integers by certain ternary quadratic forms.
Triangulated defect categories
Abstract
We will define certain Verdier quotients of the singularity category of a ring R, called defect categories. The triviality of these defect
categories determine, for example, whether a commutative local ring is Gorenstein, or a complete intersection. The dimension (in the sense of Rouquier) of the defect category thus gives a measure of how close such a ring is to being Gorenstein, respectively, a complete intersection. Examples will be given. This is based on joint work with Petter Bergh and Steffen Oppermann.
Optimally Blended Spectral-Finite Element Scheme for Wave Propagation and Non-Standard Reduced Integration
Abstract
We study the dispersion and dissipation of the numerical scheme obtained by taking a weighted averaging of the consistent (finite element) mass matrix and lumped (spectral element) mass matrix for the small wave number limit. We find and prove that for the optimum blending the resulting scheme
(a) provides $2p+4$ order accuracy for $p$th order method (two orders more accurate compared with finite and spectral element schemes);
(b) has an absolute accuracy which is $\mathcal{O}(p^{-3})$ and $\mathcal{O}(p^{-2})$ times better than that of the pure finite and spectral element schemes, respectively;
(c) tends to exhibit phase lag.
Moreover, we show that the optimally blended scheme can be efficiently implemented merely by replacing the usual Gaussian quadrature rule used to assemble the mass and stiffness matrices by novel nonstandard quadrature rules which are also derived.
Witten--Reshetikhin--Turaev invariants of mapping tori via skein theory
Abstract
A purely mechanical approach to the formation and propagation of aneurysms
Abstract
One of the main problems occurring in the aorta is the development of aneurysms, in which case the artery wall thickens and its diameter increases. Suffice to say that many other factors may be involved in this process. These include, amongst others, geometry, non-homogeneous material, anisotropy, growth, remodeling, age, etc. In this talk, we examine the bifurcation of inflated thick-walled cylindrical shells under axial loading and its interpretation in terms of the mechanical response of arterial tissue and the formation and propagation of aneurysms. We will show that this mechanical approach is able to capture features of the mechanisms involved during the formation and propagation of aneurysms.
The formation of shocks for the classical compressible Euler equations
Abstract
In this talk I shall discuss about the classical compressible Euler equations in three
space dimensions for a perfect fluid with an arbitrary equation of state.
We considered initial data which outside a sphere coincide with the data corresponding
to a constant state, we established theorems which gave a complete description of the
maximal development. In particular, we showed that the boundary of the domain of the
maximal development has a singular part where the inverse density of the wave fronts
vanishes, signaling shock formation.
Counting and packing Hamilton cycles in dense graphs and oriented graphs
Abstract
In this talk we present a general method using permanent estimates in order to obtain results about counting and packing Hamilton cycles in dense graphs and oriented graphs. As a warm up we prove that every Dirac graph $G$ contains at least $(reg(G)/e)^n$ many distinct Hamilton cycles, where $reg(G)$ is the maximal degree of a spanning regular subgraph of $G$. We continue with strengthening a result of Cuckler by proving that the number of oriented Hamilton cycles in an almost $cn$-regular oriented graph is $(cn/e)^n(1+o(1))^n$, provided that $c$ is greater than $3/8$. Last, we prove that every graph $G$ of minimum degree at least $n/2+\epsilon n$ contains at least $reg_{even}(G)-\epsilon n$ edge-disjoint Hamilton cycles, where $reg_{even}(G)$ is the maximal even degree of a spanning regular subgraph of $G$. This proves an approximate version of a conjecture made by Osthus and K\"uhn. Joint work with Michael Krivelevich and Benny Sudakov.
An introduction to mathematical finance : market completeness, arbitrage and backward stochastic differential equations
Abstract
I will present the basics of mathematical finance, and what probabilists do there. More specifically, I will present the basic concepts of replication of a derivative contract by trading, market completeness, arbitrage, and the link with Backward Stochastic Differential Equations (BSDEs).
Crystalline solids with a uniform distribution of dislocations
Abstract
Crystalline solids are descibed by a material manifold endowed
with a certain structure which we call crystalline. This is characterized by
a canonical 1-form, the integral of which on a closed curve in the material manifold
represents, in the continuum limit, the sum of the Burgers vectors of all the dislocation lines
enclosed by the curve. In the case that the dislocation distribution is uniform, the material manifold
becomes a Lie group upon the choice of an identity element. In this talk crystalline solids
with uniform distributions of the two elementary kinds of dislocations, edge and screw dislocations,
shall be considered. These correspond to the two simplest non-Abelian Lie groups, the affine group
and the Heisenberg group respectively. The statics of a crystalline solid are described in terms of a
mapping from the material domain into Euclidean space. The equilibrium configurations correspond
to mappings which minimize a certain energy integral. The static problem is solved in the case of
a small density of dislocations.
That which we call a manifold ...
Abstract
It's well known that the mapping space of two finite dimensional
manifolds can be given the structure of an infinite dimensional manifold
modelled on Frechet spaces (provided the source is compact). However, it is
not that the charts on the original manifolds give the charts on the mapping
space: it is a little bit more complicated than that. These complications
become important when one extends this construction, either to spaces more
general than manifolds or to properties other than being locally linear.
In this talk, I shall show how to describe the type of property needed to
transport local properties of a space to local properties of its mapping
space. As an application, we shall show that applying the mapping
construction to a regular map is again regular.