Thu, 22 Feb 2024

12:00 - 13:00
L3

Structural identifiability analysis: An important tool in systems modelling

Michael Chappell
(University of Warwick)
Abstract

For many systems (certainly those in biology, medicine and pharmacology) the mathematical models that are generated invariably include state variables that cannot be directly measured and associated model parameters, many of which may be unknown, and which also cannot be measured.  For such systems there is also often limited access for inputs or perturbations. These limitations can cause immense problems when investigating the existence of hidden pathways or attempting to estimate unknown parameters and this can severely hinder model validation. It is therefore highly desirable to have a formal approach to determine what additional inputs and/or measurements are necessary in order to reduce or remove these limitations and permit the derivation of models that can be used for practical purposes with greater confidence.

Structural identifiability arises in the inverse problem of inferring from the known, or assumed, properties of a biomedical or biological system a suitable model structure and estimates for the corresponding rate constants and other model parameters.  Structural identifiability analysis considers the uniqueness of the unknown model parameters from the input-output structure corresponding to proposed experiments to collect data for parameter estimation (under an assumption of the availability of continuous, noise-free observations).  This is an important, but often overlooked, theoretical prerequisite to experiment design, system identification and parameter estimation, since estimates for unidentifiable parameters are effectively meaningless.  If parameter estimates are to be used to inform about intervention or inhibition strategies, or other critical decisions, then it is essential that the parameters be uniquely identifiable. 

Numerous techniques for performing a structural identifiability analysis on linear parametric models exist and this is a well-understood topic.  In comparison, there are relatively few techniques available for nonlinear systems (the Taylor series approach, similarity transformation-based approaches, differential algebra techniques and the more recent observable normal form approach and symmetries approaches) and significant (symbolic) computational problems can arise, even for relatively simple models in applying these techniques.

In this talk an introduction to structural identifiability analysis will be provided demonstrating the application of the techniques available to both linear and nonlinear parameterised systems and to models of (nonlinear mixed effects) population nature.


 
Thu, 22 Feb 2024

12:00 - 13:00
L3

OCIAM-WCMB SEMINAR Structural identifiability analysis: An important tool in systems modelling

Professor Michael Chappell
(Dept of Mathematics University of Warwick)
Abstract

 

For many systems (certainly those in biology, medicine and pharmacology) the mathematical models that are generated invariably include state variables that cannot be directly measured and associated model parameters, many of which may be unknown, and which also cannot be measured.  For such systems there is also often limited access for inputs or perturbations. These limitations can cause immense problems when investigating the existence of hidden pathways or attempting to estimate unknown parameters and this can severely hinder model validation. It is therefore highly desirable to have a formal approach to determine what additional inputs and/or measurements are necessary in order to reduce or remove these limitations and permit the derivation of models that can be used for practical purposes with greater confidence.

Structural identifiability arises in the inverse problem of inferring from the known, or assumed, properties of a biomedical or biological system a suitable model structure and estimates for the corresponding rate constants and other model parameters.  Structural identifiability analysis considers the uniqueness of the unknown model parameters from the input-output structure corresponding to proposed experiments to collect data for parameter estimation (under an assumption of the availability of continuous, noise-free observations).  This is an important, but often overlooked, theoretical prerequisite to experiment design, system identification and parameter estimation, since estimates for unidentifiable parameters are effectively meaningless.  If parameter estimates are to be used to inform about intervention or inhibition strategies, or other critical decisions, then it is essential that the parameters be uniquely identifiable. 

Numerous techniques for performing a structural identifiability analysis on linear parametric models exist and this is a well-understood topic.  In comparison, there are relatively few techniques available for nonlinear systems (the Taylor series approach, similarity transformation-based approaches, differential algebra techniques and the more recent observable normal form approach and symmetries approaches) and significant (symbolic) computational problems can arise, even for relatively simple models in applying these techniques.

In this talk an introduction to structural identifiability analysis will be provided demonstrating the application of the techniques available to both linear and nonlinear parameterised systems and to models of (nonlinear mixed effects) population nature.

Wed, 21 Feb 2024
16:00
L6

Groups Acting Acylindrically on Trees

William Cohen
(University of Cambridge)
Abstract

It was shown by Balasubramanya that any acylindrically hyperbolic group (a natural generalisation of a hyperbolic group) must act acylindrically and non-elementarily on some quasi-tree. It is therefore sensible to ask to what extent this is true for trees, i.e. given an acylindrically hyperbolic group, does it admit a non-elementary acylindrical action on some simplicial tree? In this talk I will introduce the concepts of acylindrically hyperbolic and acylindrically arboreal groups and discuss some particularly interesting examples of acylindrically hyperbolic groups which do and do not act acylindrically on trees.

Wed, 21 Feb 2024

14:00 - 15:00
Lecture Theatre 2, Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, OX2 6GG

Classical density-functional theory: from formulation to nanofluidics to machine learning

Serafim Kalliadasis
(Imperial College London)
Further Information

This is an Oxford Solid Mechanics and Mathematics Joint Seminar

Abstract

We review progress made by our group on soft matter at interfaces and related physics from the nano- to macroscopic lengthscales. Specifically, to capture nanoscale properties very close to interfaces and to establish a link to the macroscale behaviour, we employ elements from the statistical mechanics of classical fluids, namely density-functional theory (DFT). We formulate a new and general dynamic DFT that carefully and systematically accounts for the fundamental elements of any classical fluid and soft matter system, a crucial step towards the accurate and predictive modelling of physically relevant systems. In a certain limit, our DDFT reduces to a non-local Navier-Stokes-like equation that we refer to as hydrodynamic DDFT: an inherently multiscale model, bridging the micro- to the macroscale, and retaining the relevant fundamental microscopic information (fluid temperature, fluid-fluid and wall-fluid interactions) at the macroscopic level.

 

Work analysing the moving contact line in both equilibrium and dynamics will be presented. This has been a longstanding problem for fluid dynamics with a major challenge being its multiscale nature, whereby nanoscale phenomena manifest themselves at the macroscale. A key property captured by DFT at equilibrium, is the fluid layering on the wall-fluid interface, amplified as the contact angle decreases. DFT also allows us to unravel novel phase transitions of fluids in confinement. In dynamics, hydrodynamic DDFT allows us to benchmark existing phenomenological models and reproduce some of their key ingredients. But its multiscale nature also allows us to unravel the underlying physics of moving contact lines, not possible with any of the previous approaches, and indeed show that the physics is much more intricate than the previous models suggest.

 

We will close with recent efforts on machine learning and DFT. In particular, the development of a novel data-driven physics-informed framework for the solution of the inverse problem of statistical mechanics: given experimental data on the collective motion of a classical many-body system, obtain the state functions, such as free-energy functionals.

Tue, 20 Feb 2024

16:00 - 17:00
C2

Quantized differential calculus on quantum tori

Quanhua Xu
(Université de Franche-Comté)
Abstract

We discuss Connes’ quantized calculus on quantum tori and Euclidean spaces, as applications of the recent development of noncommutative analysis.
This talk is based on a joint work in progress with Xiao Xiong and Kai Zeng.
 

Tue, 20 Feb 2024
15:00
L6

Counting geodesics of given commutator length

Viveka Erlandsson
Abstract

Abstract: It’s a classical result by Huber that the number of closed geodesics of length bounded by L on a closed hyperbolic surface S is asymptotic to exp(L)/L as L grows. This result has been generalized in many directions, for example by counting certain subsets of closed geodesics. One such result is the asymptotic growth of those that are homologically trivial, proved independently by both by Phillips-Sarnak and Katsura-Sunada. A homologically trivial curve can be written as a product of commutators, and in this talk we will look at those that can be written as a product of g commutators (in a sense, those that bound a genus g subsurface) and obtain their asymptotic growth. As a special case, our methods give a geometric proof of Huber’s classical theorem. This is joint work with Juan Souto. 

Tue, 20 Feb 2024

14:30 - 15:00
L6

CMA Light: A novel Minibatch Algorithm for large-scale non convex finite sum optimization

Corrado Coppola
(Sapienza University of Rome)
Abstract
The supervised training of a deep neural network on a given dataset consists of the unconstrained minimization of the finite sum of continuously differentiable functions, commonly referred to as loss with respect to the samples. These functions depend on the network parameters and most of the times are non-convex.  We develop CMA Light, a new globally convergent mini-batch gradient method to tackle this problem. We consider the recently introduced Controlled Minibatch Algorithm (CMA) framework and we overcome its main bottleneck, removing the need for at least one evaluation of the whole objective function per iteration. We prove global convergence of CMA Light under mild assumptions and we discuss extensive computational results on the same experimental test bed used for CMA, showing that CMA Light requires less computational effort than most of the state-of-the-art optimizers. Eventually, we present early results on a large-scale Image Classification task.
 
The reference pre-print is already on arXiv at https://arxiv.org/abs/2307.15775
Tue, 20 Feb 2024

14:00 - 15:00
L4

Hamiltonicity of expanders: optimal bounds and applications

Nemanja Draganić
(University of Oxford)
Abstract

An $n$-vertex graph $G$ is a $C$-expander if $|N(X)|\geq C|X|$ for every $X\subseteq V(G)$ with $|X|< n/2C$ and there is an edge between every two disjoint sets of at least $n/2C$ vertices.

We show that there is some constant $C>0$ for which every $C$-expander is Hamiltonian. In particular, this implies the well known conjecture of Krivelevich and Sudakov from 2003 on Hamilton cycles in $(n,d,\lambda)$-graphs. This completes a long line of research on the Hamiltonicity of sparse graphs, and has many applications.

Joint work with R. Montgomery, D. Munhá Correia, A. Pokrovskiy and B. Sudakov.

Tue, 20 Feb 2024

14:00 - 14:30
L6

Tensor Methods for Nonconvex Optimization using Cubic-quartic regularization models

Wenqi Zhu
(Mathematical Institute (University of Oxford))
Abstract

High-order tensor methods for solving both convex and nonconvex optimization problems have recently generated significant research interest, due in part to the natural way in which higher derivatives can be incorporated into adaptive regularization frameworks, leading to algorithms with optimal global rates of convergence and local rates that are faster than Newton's method. On each iteration, to find the next solution approximation, these methods require the unconstrained local minimization of a (potentially nonconvex) multivariate polynomial of degree higher than two, constructed using third-order (or higher) derivative information, and regularized by an appropriate power of the change in the iterates. Developing efficient techniques for the solution of such subproblems is currently, an ongoing topic of research,  and this talk addresses this question for the case of the third-order tensor subproblem.


In particular, we propose the CQR algorithmic framework, for minimizing a nonconvex Cubic multivariate polynomial with  Quartic Regularisation, by sequentially minimizing a sequence of local quadratic models that also incorporate both simple cubic and quartic terms. The role of the cubic term is to crudely approximate local tensor information, while the quartic one provides model regularization and controls progress. We provide necessary and sufficient optimality conditions that fully characterise the global minimizers of these cubic-quartic models. We then turn these conditions into secular equations that can be solved using nonlinear eigenvalue techniques. We show, using our optimality characterisations, that a CQR algorithmic variant has the optimal-order evaluation complexity of $O(\epsilon^{-3/2})$ when applied to minimizing our quartically-regularised cubic subproblem, which can be further improved in special cases.  We propose practical CQR variants that judiciously use local tensor information to construct the local cubic-quartic models. We test these variants numerically and observe them to be competitive with ARC and other subproblem solvers on typical instances and even superior on ill-conditioned subproblems with special structure.

Tue, 20 Feb 2024

14:00 - 15:00
L5

Faithfulness of highest-weight modules for Iwasawa algebras

Stephen Mann
(University of Cambridge)
Abstract

Iwasawa algebras are completions of group algebras for p-adic Lie groups, and have applications for studying the representations of these groups. It is an ongoing project to study the prime ideals, and more generally the two-sided ideals, of these algebras.

In the case of Iwasawa algebras corresponding to a simple Lie algebra with a Chevalley basis, we aim to prove that all non-zero two-sided ideals have finite codimension. To prove this, it is sufficient to show faithfulness of modules arising from highest-weight modules for the corresponding Lie algebra.

I have proved two main results in this direction: firstly, I proved the faithfulness of generalised Verma modules over the Iwasawa algebra. Secondly, I proved the faithfulness of all infinite-dimensional highest-weight modules in the case where the Lie algebra has type A. In this talk, I will outline the methods I used to prove these cases.

Tue, 20 Feb 2024
12:30
L4

Gravitational Observatories

Dionysios Anninos
(King's College London)
Abstract

We discuss timelike surfaces of finite size in general relativity and the initial boundary value problem. We consider obstructions with the standard Dirichlet problem, and conformal version with improved properties. The ensuing dynamical features are discussed with general cosmological constant.

Tue, 20 Feb 2024
11:00
Lecture room 5

The flow equation approach to singular SPDEs.

Massimiliano Gubinelli
(Mathematical Institute)
Abstract

I will give an overview of a recent method introduced by P. Duch to solve some subcritical singular SPDEs, in particular the stochastic quantisation equation for scalar fields. 

Mon, 19 Feb 2024

16:30 - 17:30
L5

Sharp stability for Sobolev and log-Sobolev inequalities, with optimal dimensional dependence

Rupert Frank
(LMU Munich)
Abstract

The sharp constant in the Sobolev inequality and the set of optimizers are known. It is also known that functions whose Sobolev quotient is almost minimial are close to minimizers. We are interested in a quantitative version of the last statement and present a bound that not only measures this closeness in the optimal topology and with the optimal exponent, but also has explicit constants. These constants have the optimal behavior in the limit of large dimensions, which allows us to deduce an optimal quantitative stability estimate for the Gaussian log-Sobolev inequality with an explicit dimension-free constant. Our proof relies on several ingredients:

• a discrete flow based on competing symmetries;

• a continuous rearrangement flow;

• refined estimates in the neighborhood of the optimal Aubin-Talenti functions.

The talk is based on joint work with Dolbeault, Esteban, Figalli and Loss. 


 
Mon, 19 Feb 2024
16:00
L2

On entropy of arithmetic functions

Fei Wei
(University of Oxford)
Abstract

In this seminar, I will talk about a notion of entropy of arithmetic functions and some properties of this entropy.  This notion was introduced to study Sarnak's Moebius Disjointness Conjecture.

Mon, 19 Feb 2024
15:30
L4

Maps between spherical group algebras

Thomas Nikolaus
(Universitaet Muenster)
Abstract

I will speak about a central question in higher algebra (aka brave new algebra), namely which rings or schemes admit 'higher models', that is lifts to the sphere spectrum. This question is in some sense very classical, but there are many open questions. These questions are closely related to questions about higher versions of prismatic cohomology and delta ring, asked e.g. by Scholze and Lurie. Concretely we will consider the case of group algebras and explain how to understand maps between lifts of group algebras to the sphere spectrum. The results we present are joint with Carmeli and Yuan and on the prismatic side with Antieau and Krause.

Mon, 19 Feb 2024
15:30
Lecture room 5

Rough Stochastic Analysis with Jumps

Dr Andy Allan
(University of Durham)
Abstract

Rough path theory provides a framework for the study of nonlinear systems driven by highly oscillatory (deterministic) signals. The corresponding analysis is inherently distinct from that of classical stochastic calculus, and neither theory alone is able to satisfactorily handle hybrid systems driven by both rough and stochastic noise. The introduction of the stochastic sewing lemma (Khoa Lê, 2020) has paved the way for a theory which can efficiently handle such hybrid systems. In this talk, we will discuss how this can be done in a general setting which allows for jump discontinuities in both sources of noise.

Mon, 19 Feb 2024
14:15
L4

Loop group action on symplectic cohomology

Cheuk Yu Mak
(University of Southhampton)
Abstract

For a compact Lie group $G$, its massless Coulomb branch algebra is the $G$-equivariant Borel-Moore homology of its based loop space. This algebra is the same as the algebra of regular functions on the BFM space. In this talk, we will explain how this algebra acts on the equivariant symplectic cohomology of Hamiltonian $G$-manifolds when the symplectic manifolds are open and convex. This is a generalization of the closed case where symplectic cohomology is replaced with quantum cohomology. Following Teleman, we also explain how it relates to the Coulomb branch algebra of cotangent-type representations. This is joint work with Eduardo González and Dan Pomerleano.

Mon, 19 Feb 2024

14:00 - 15:00
Lecture Room 3

This seminar has been cancelled

Mihai Badiu
(Department of Engineering Science University of Oxford)
Abstract

Data that have an intrinsic network structure can be found in various contexts, including social networks, biological systems (e.g., protein-protein interactions, neuronal networks), information networks (computer networks, wireless sensor networks),  economic networks, etc. As the amount of graphical data that is generated is increasingly large, compressing such data for storage, transmission, or efficient processing has become a topic of interest. 

In this talk, I will give an information theoretic perspective on graph compression. The focus will be on compression limits and their scaling with the size of the graph. For lossless compression, the Shannon entropy gives the fundamental lower limit on the expected length of any compressed representation. 
I will discuss the entropy of some common random graph models, with a particular emphasis on our results on the random geometric graph model. 
Then, I will talk about the problem of compressing a graph with side information, i.e., when an additional correlated graph is available at the decoder. Turning to lossy compression, where one accepts a certain amount of distortion between the original and reconstructed graphs, I will present theoretical limits to lossy compression that we obtained for the Erdős–Rényi and stochastic block models by using rate-distortion theory.

Sat, 17 Feb 2024

09:30 - 17:00
L2, L3

Oxford Women and Non-Binary in Mathematics Day 2024: Beyond the Pipeline

Abstract

conference bannerThe conference ‘Beyond the Pipeline: Women and Non-binary People in Mathematics Day’ will be held at the University of Oxford on the 17th February 2024. This is a joint event between the Mathematrix and the Mirzakhani societies of the University of Oxford. It is kindly funded by the London Mathematical Society and the Mathematical Institute at the University of Oxford, with additional funding from industry sponsors. 

The metaphor of the 'leaky pipeline' for the decreasing number of women and other gender minorities in Mathematics is problematic and outdated. It conceals the real reasons that women and non-binary people choose to leave Mathematics. This conference, 'Beyond the Pipeline', aims to encourage women and non-binary people to pursue careers in Mathematics, to promote women and non-binary role models, and to create a community of like-minded people. 

Speakers: 

  • Brigitte Stenhouse, The Open University
  • Mura Yakerson, The University of Oxford
  • Vandita Patel, The University of Manchester
  • Melanie Rupflin, The University of Oxford
  • Christl Donnelly, The University of Oxford

The conference will also include: 

  • A panel discussion on careers in and out of academia
  • Talks by early-career speakers
  • Poster presentations
  • 1:1 bookable appointments with our industry sponsors (Cisco, Jane Street, ING, and Optiver)
  • Careers stands with our sponsors and the IMA

More information can be found on our website https://www.oxwomeninmaths2024.co.uk/.

This conference is open to everyone regardless of their gender identity. Registration is via the following google form https://forms.gle/cDGaeJCPbBFEPfDB6 and will close when we have reached capacity. We have limited travel funding to support travel to Oxford from within the UK and you can apply for this on the registration form. The deadline for those applying to give a talk and for those applying for travel funding is the 27th January.

If you have any questions email us at @email

Fri, 16 Feb 2024
16:00
L1

Conferences and networking

Naomi Andrew, Jane Coons, Antonio Esposito, Romain Ruzziconi
(Mathematical Institute (University of Oxford))
Abstract

Conferences and networking are important parts of academic life, particularly early in your academic career.  But how do you make the most out of conferences?  And what are the does and don'ts of networking?  Learn about the answers to these questions and more in this panel discussion by postdocs from across the Mathematical Institute.

Fri, 16 Feb 2024

15:00 - 16:00
L5

Morse Theory for Tubular Neighborhoods

Antoine Commaret
(INRIA Sophia-Antipolis)
Abstract
Given a set $X$ inside a Riemaniann manifold $M$ and a smooth function $f : X -> \mathbb{R}$, Morse Theory studies the evolution of the topology of the closed sublevel sets filtration $X_c = X \cap f^{-1}(-\infty, c]$ when $c \in \mathbb{R}$ varies using properties on $f$ and $X$ when the function is sufficiently generic. Such functions are called Morse Functions . In that case, the sets $X_c$ have the homotopy type of a CW-complex with cells added at every critical point. In particular, the persistent homology diagram associated to the sublevel sets filtration of a Morse Function is easily understood. 
 
In this talk, we will give a broad overview of the classical Morse Theory, i.e when $X$ is itself a manifold, before discussing how this regularity assumption can be relaxed. When $M$ is a Euclidean space, we will describe how to define a notion of Morse Functions, first on sets with positive reach (a result from Joseph Fu, 1988), and then for any tubular neighborhood of a set at a regular value of its distance function, i.e when $X = \{ x \in M, d_Y(x) \leq \varepsilon \}$ where $Y \subset M$ is a compact set and $\varepsilon > 0$ is a regular value of $d_Y$ the distance to $Y$ function.
 
 
If needed, here are three references :
 
Morse Theory , John Milnor, 1963
 
Curvature Measures and Generalized Morse Theory, Joseph Fu, 1988
Morse Theory for Tubular Neighborhoods, Antoine Commaret, 2024, Arxiv preprint https://arxiv.org/abs/2401.04034
Fri, 16 Feb 2024

14:00 - 15:00
L3

Active surfaces in biology

Professor Alex Mietke
(Dept of Physics University of Oxford)
Abstract

The ability of biological matter to move and deform itself is facilitated by microscopic out-of-equilibrium processes that convert chemical energy into mechanical work. In many cases, this mechano-chemical activity takes place on effectively two-dimensional domains formed by, for example, multicellular structures like epithelial tissues or the outer surface of eukaryotic cells, the so-called actomyosin cortex.
We will show in the first part of the talk, that the large-scale dynamics and self-organisation of such structures can be captured by the theory of active fluids. Specifically, using a minimal model of active isotropic fluids, we can rationalize the emergence of asymmetric epithelial tissue flows in the flower beetle during early development, and explain cell rotations in the context of active chiral flows and left-right symmetry breaking that occurs as the model organism C. elegans sets up its body plan.
To develop a more general understanding of such processes, specifically the role of geometry, curvature and interactions with the environment, we introduce in the second part a theory of active fluid surfaces and discuss analytical and numerical tools to solve the corresponding momentum balance equations of curved and deforming surfaces. By considering mechanical interactions with the environment and the fully self-organized shape dynamics of active surfaces, these tools reveal novel mechanisms of symmetry breaking and pattern formation in active matter.

Fri, 16 Feb 2024

12:00 - 13:00
Quillen Room

Periodic modules and perverse equivalences

Alfred Dabson
(City University London)
Abstract

Perverse equivalences, introduced by Chuang and Rouquier, are derived equivalences with a particularly nice combinatorial description. This generalised an earlier construction, with which they proved Broué’s abelian defect group conjecture for blocks of the symmetric groups. Perverse equivalences are of much wider significance in the representation theory of finite dimensional symmetric algebras. Grant has shown that periodic algebras admit perverse autoequivalences. In a similar vein, I will present some perverse equivalences arising from certain periodic modules, with an application to the setting of the symmetric groups.

Thu, 15 Feb 2024

17:00 - 18:00

On logical structure of physical theories and limits

Boris Zilber
(University of Oxford)
Abstract

I am going to discuss main results of my paper "Physics over a finite field and Wick rotation", arxiv 2306.15698. It introduces a structure over a pseudo-finite field which might be of interest in Foundations of Physics. The main theorem establishes an analogue of the polar co-ordinate system in the pseudo-finite field. A stability classification status of the structure is an open question.