Thu, 16 Feb 2012

16:00 - 17:00
L3

Smooth numbers in arithmetic progressions

Adam Harper
(Cambridge)
Abstract

A number is said to be $y$-smooth if all of its prime factors are

at most $y$. A lot of work has been done to establish the (equi)distribution

of smooth numbers in arithmetic progressions, on various ranges of $x$,$y$

and $q$ (the common difference of the progression). In this talk I will

explain some recent results on this problem. One ingredient is the use of a

majorant principle for trigonometric sums to carefully analyse a certain

contour integral.

Thu, 16 Feb 2012

13:00 - 14:00
SR2

Generalized Geometry - a starter course.

Roberto Rubio
Abstract

Basic and mild introduction to Generalized Geometry from the very beginning: the generalized tangent space, generalized metrics, generalized complex structures... All topped with some Lie type B flavour. Suitable for vegans. May contain traces of spinors.

Thu, 16 Feb 2012
12:30
Gibson 1st Floor SR

Geometric flows and their singularities

Reto Müller
(Imperial College, London)
Abstract

In this talk, we first study the Mean Curvature Flow, an evolution equation for submanifolds of some Euclidean space. We review a famous monotonicity formula of Huisken and its application to classifying so-called Type I singularities. Then, we discuss the Ricci Flow, which might be seen as the intrinsic analog of the Mean Curvature Flow for abstract Riemannian manifolds. We explain how Huisken's classification of Type I singularities can be adopted to this intrinsic setting, using monotone quantities found by Perelman.

Wed, 15 Feb 2012

16:00 - 17:00
SR2

Groups with prescribed finiteness properties

Stefan Witzel
Abstract

The first group known to be finitely presented but having infinitely generated 3rd homology was constructed by Stallings. Bieri extended this to a series of groups G_n such that G_n is of type F_{n-1} but not of type F_n. Finally, Bestvina and Brady turned it into a machine that realizes prescribed finiteness properties. We will discuss some of these examples.

Wed, 15 Feb 2012
16:00
L3

tba

Nick Bezhanishvili
(Imperial College)
Wed, 15 Feb 2012

10:15 - 11:15
OCCAM Common Room (RI2.28)

Multiscale models of bacterial pattern formation

Chuan Xue
(Ohio State University)
Abstract

Mathematical models of chemotactic movement of bacterial populations are often written as systems of partial differential equations for the densities of bacteria and concentrations of extracellular signaling chemicals. This approach has been employed since the seminal work of Keller and Segel in the 1970s [Keller and Segel, J. Theor. Biol., 1971]. The system has been shown to permit travelling wave solutions which correspond to travelling band formation in bacterial colonies, yet only under specific criteria, such as a singularity in the chemotactic sensitivity function as the signal approaches zero. Such a singularity generates infinite macroscopic velocities that ar biologically unrealistic. Here we present a microscopic model that takes into consideration relevant details of the intracellular processes while avoiding the singularity in the chemotactic sensitivity. We show that this model permits travelling wave solutions and predicts the formation of other bacterial patterns such as radial and spiral streams. We also present connections of this microscopic model with macroscopic models of bacterial chemotaxis. This is joint work with Radek Erban, Benjamin Franz, Hyung Ju Hwang, and Kevin J.

Painter.

Wed, 15 Feb 2012
00:00

Centralisers of Subsystems of Fusion Systems -- St Hugh's, 80WR18

Jason Semeraro
(Oxford)
Abstract

Saturated fusion systems are a relatively new class of objects that are often described as the correct 'axiomatisation' of certain p-local phenomena in algebraic topology. Despite these geometric beginnings however, their structure is sufficiently rigid to afford its own local theory which in some sense mimics the local theory of finite groups. In this talk, I will briefly motivate the definition of a saturated fusion system and discuss a remarkable result of Michael Aschbacher which proves that centralisers of normal subsystems of a saturated fusion system, F, exist and are themselves saturated. I will then attempt to justify his definition in the case where F is non-exotic by appealing to some classical group theoretic results. If time permits I will speculate about a topological characterisation of the centraliser as the set of homotopy fixed points of a certain action on the classifying space of F.

Tue, 14 Feb 2012

14:30 - 15:30
L3

Line arrangements and geometric representations of graphs

Tobias Mueller, Amsterdam
Abstract

A dot product representation of a graph assigns to each vertex $s$ a vector $v(s)$ in ${\bf R}^k$ in such a way that $v(s)^T v(t)$ is greater than $1$ if and only $st$ is an edge. Similarly, in a distance representation $|v(s)-v(t)|$ is less than $1$ if and only if $st$ is an edge.

I will discuss the solution of some open problems by Spinrad, Breu and Kirkpatrick and others on these and related geometric representations of graphs. The proofs make use of a connection to oriented pseudoline arrangements.

(Joint work with Colin McDiarmid and Ross Kang)

Mon, 13 Feb 2012

16:00 - 17:00
SR1

An introduction to p-adic cohomology

Jan Tuitman
Abstract

In this talk we will give an introduction to the theory of p-adic (or rigid) cohomology. We will first define the theory for smooth affine varieties, then sketch the definition in general, next compute a simple example, and finally discuss some applications.

Mon, 13 Feb 2012

15:45 - 16:45
L3

The topology and geometry of automorphism groups of free groups II

Karen Vogtmann
(Cornell)
Abstract

Free groups, free abelian groups and fundamental groups of

closed orientable surfaces are the most basic and well-understood

examples of infinite discrete groups. The automorphism groups of

these groups, in contrast, are some of the most complex and intriguing

groups in all of mathematics. In these lectures I will concentrate

on groups of automorphisms of free groups, while drawing analogies

with the general linear group over the integers and surface mapping

class groups. I will explain modern techniques for studying

automorphism groups of free groups, which include a mixture of

topological, algebraic and geometric methods.

Mon, 13 Feb 2012

15:45 - 16:45
Oxford-Man Institute

Finite rank perturbations of random matrices and free probability theory

FLORENT BENAYCH-GEORGES
(Pierre and Marie Curie University)
Abstract

Abstract : The question adressed in this talk is the following one : how are the extreme eigenvalues of a matrix X moved by a small rank perturbation P of X ?
We shall consider this question in its generic apporach, i.e. when the matrices X and P are chosen at random independently and in isotropic ways.
We shall give a general answer, uncovering a remarkable phase transition phenomenon: the limit of the extreme eigenvalues of the perturbed matrix differs from the original matrix if and only if the eigenvalues of the perturbing matrix are above a certain critical threshold. We also examine the consequences of this eigenvalue phase transition on the associated eigenvectors and generalize our results to examine the case of multiplicative perturbations or of additive perturbations for the singular values of rectangular matrices.

Mon, 13 Feb 2012

14:15 - 15:15
Oxford-Man Institute

"On diffusions interacting through their ranks"

Mykhaylo Shkolnikov
(Stanford, USA)
Abstract

Abstract: We will discuss systems of diffusion processes on the real line, in which the dynamics of every single process is determined by its rank in the entire particle system. Such systems arise in mathematical finance and statistical physics, and are related to heavy-traffic approximations of queueing networks. Motivated by the applications, we address questions about invariant distributions, convergence to equilibrium and concentration of measure for certain statistics, as well as hydrodynamic limits and large deviations for these particle systems. Parts of the talk are joint works with Amir Dembo, Tomoyuki Ichiba, Ioannis Karatzas, Soumik Pal and Ofer Zeitouni

 

Mon, 13 Feb 2012

14:15 - 15:15
Oxford-Man Institute

"On diffusions interacting through their ranks"

Mykhaylo Shkolnikov
(Stanford, USA)
Abstract

Abstract: We will discuss systems of diffusion processes on the real line, in which the dynamics of every single process is determined by its rank in the entire particle system. Such systems arise in mathematical finance and statistical physics, and are related to heavy-traffic approximations of queueing networks. Motivated by the applications, we address questions about invariant distributions, convergence to equilibrium and concentration of measure for certain statistics, as well as hydrodynamic limits and large deviations for these particle systems. Parts of the talk are joint works with Amir Dembo, Tomoyuki Ichiba, Ioannis Karatzas, Soumik Pal and Ofer Zeitouni

 

Mon, 13 Feb 2012

12:00 - 13:00
L3

Quantum states to brane geometries via fuzzy moduli space

Sanjaye Ramgoolam
(Queen Mary University of London)
Abstract

The moduli space of supersymmetric (eighth-BPS) giant gravitons in $AdS_5 \times S^5$ is a limit of projective spaces. Quantizing this moduli space produces a Fock space of oscillator states, with a cutoff $N$ related to the rank of the dual $U(N)$ gauge group. Fuzzy geometry provides the ideal set of techniques for associating points or regions of moduli space to specific oscillator states. It leads to predictions for the spectrum of BPS excitations of specific worldvolume geometries. It also leads to a group theoretic basis for these states, containing Young diagram labels for $U(N)$ as well as the global $U(3)$ symmetry group. The problem of constructing gauge theory operators corresponding to the oscillator states and  some recent progress in this direction are explained.

Fri, 10 Feb 2012
16:30
L2

The topology and geometry of automorphism groups of free groups

Professor Karen Vogtmann
(Cornell University)
Abstract

Free groups, free abelian groups and fundamental groups of

closed orientable surfaces are the most basic and well-understood examples

of infinite discrete groups. The automorphism groups of these groups, in

contrast, are some of the most complex and intriguing groups in all of

mathematics. I will give some general comments about geometric group

theory and then describe the basic geometric object, called Outer space,

associated to automorphism groups of free groups.

This Colloquium talk is the first of a series of three lectures given by

Professor Vogtmann, who is the European Mathematical Society Lecturer. In

this series of three lectures, she will discuss groups of automorphisms

of free groups, while drawing analogies with the general linear group over

the integers and surface mapping class groups. She will explain modern

techniques for studying automorphism groups of free groups, which include

a mixture of topological, algebraic and geometric methods.

Fri, 10 Feb 2012

14:30 - 15:30
DH 3rd floor SR

Ocean Eddy Parameterisation and Conservation Principles

Dr. James Maddison
(AOPP University of Oxford)
Abstract

Ocean climate models are unlikely routinely to have sufficient

resolution to resolve the turbulent ocean eddy field. The need for the

development of improved mesoscale eddy parameterisation schemes

therefore remains an important task. The current dominant mesoscale eddy

closure is the Gent and McWilliams scheme, which enforces the

down-gradient mixing of buoyancy. While motivated by the action of

baroclinic instability on the mean flow, this closure neglects the

horizontal fluxes of horizontal momentum. The down-gradient mixing of

potential vorticity is frequently discussed as an alternative

parameterisation paradigm. However, such a scheme, without careful

treatment, violates fundamental conservation principles, and in

particular violates conservation of momentum.

A new parameterisation framework is presented which preserves

conservation of momentum by construction, and further allows for

conservation of energy. The framework has one dimensional parameter, the

total eddy energy, and five dimensionless and bounded geometric

parameters. The popular Gent and McWilliams scheme exists as a limiting

case of this framework. Hence the new framework enables for the

extension of the Gent and McWilliams scheme, in a manner consistent with

key physical conservations.

Fri, 10 Feb 2012
14:15
DH 1st floor SR

Good-deal bounds in a regime-switching diffusion market

Catherine Donnelly (Heriot-Watt)
Abstract

We consider the pricing of a maturity guarantee, which is equivalent to the pricing of a European put option, in a regime-switching market model. Regime-switching market models have been empirically shown to fit long-term stockmarket data better than many other models. However, since a regime-switching market is incomplete, there is no unique price for the maturity guarantee. We extend the good-deal pricing bounds idea to the regime-switching market model. This allows us to obtain a reasonable range of prices for the maturity guarantee, by excluding those prices which imply a Sharpe Ratio which is too high. The range of prices can be used as a plausibility check on the chosen price of a maturity guarantee.