Fri, 18 Nov 2022
16:00
C1

Rigidity of Banach *-algebras

Eduard Ortega
(NTNU. Trondheim)
Abstract

It is well known that two non-isomorphic groups (groupoids) can produce isomorphic C*-algebras. That is, group (groupoid) C*-algebras are not rigid. This is not the case of the L^p-operator algebras associated to locally compact groups ( effective groupoids) where the isomorphic class of the group (groupoid) uniquely determines up to isometric isomorphism the associated L^p-algebras. Thus, L^p-operator algebras are rigid.  Liao and Yu introduced a class of Banach *-algebras associated to locally compact groups. We will see that this family of Banach *-algebras are also rigid.  

Fri, 18 Nov 2022

15:00 - 16:00
L5

Tensor-based frameworks for cancer genomics

Neriman Tokcan
(MIT & Harvard)
Further Information

(taken from https://nerimantokcan.com/)

Neriman Tokcan's research focuses on formulating novel, mathematically sound theoretical frameworks to perform analysis of multi-modal, multi-dimensional data while preserving the integrity of their structure. Her work on the generalization of matrix-based compression, noise elimination, and dimension reduction methods to higher dimensions. Her background is at the intersection of algebraic geometry, multi-linear algebra, combinatorics, and representation theory. I explore applications in bioinformatics and cancer genomics.

Currently, Neriman is working on the formulation of the novel, mathematically sound tensor-based frameworks, and the development of computational tools to model tumor microenvironments.

Neriman will join the University of Massachusetts Boston as a Tenure-Track Assistant Professor of Applied Mathematics in January 2023.

Abstract

The tumor microenvironment (TME) is a complex milieu around the tumor, whereby cancer cells interact with stromal, immune, vascular, and extracellular components. The TME is being increasingly recognized as a key determinant of tumor growth, disease progression, and response to therapies. We build a generalizable and robust tensor-based framework capable of integrating dissociated single-cell and spatially resolved RNA-seq data for a comprehensive analysis of the TME. Tensors are a generalization of matrices to higher dimensions. Tensor methods are known to be able to successfully incorporate data from multiple sources and perform a joint analysis of heterogeneous high-dimensional data sets. The methodologies developed as part of this effort will advance our understanding of the TME in multiple directions. These include cellular heterogeneity within the TME, crosstalks between cells, and tumor-intrinsic pathways stimulating tumor growth and immune evasion.

Fri, 18 Nov 2022

14:00 - 15:00
L5

From grain transport to aeolian and fluvial dynamics: a field-model approach

Pauline Delorme
(University of Hull)
Abstract

The evolution of land surfaces is partly cause by the erosion, transport and deposition of sediment. My research aims to understand the origin and evolution of landscapes, using the tools of fluid mechanics. I am particularly interested in aeolian and fluvial transport of sediments. To do this, I use a multi-method approach (theoretical/numerical analysis, laboratory experiments and field measurements). The use of simplified laboratory experiments allows me to limit the complexity of natural systems by identifying the main mechanisms controlling sediment transport.  Once these physical laws are established, I apply them to natural data to explain the morphology of the observed landscapes, and to predict their evolution.

In this seminar, I will present two examples of the application of my work. An experimental study highlighting the influence of input conditions (water and sediment flows, sediment properties) on the morphology of fluvial deposits (i.e. alluvial fan), as well as a theoretical analysis coupled with field measurements to understand the mechanisms of dune initiation.

Fri, 18 Nov 2022

14:00 - 15:00
L3

Beyond DNA damage

Prof Hooshang Nikjoo
(Department of Physiology Anatomy & Genetics, University of Oxford )
Fri, 18 Nov 2022

12:00 - 13:00
N3.12

Realising The Smooth Representations of GL(2,Zp)

Tom Adams
(University of Cambridge)
Abstract

The character table of GL(2,Fq), for a prime power q, was constructed over a century ago. Many of these characters were determined via the explicit construction of a corresponding representation, but purely character-theoretic techniques were first used to compute the so-called discrete series characters. It was not until the 1970s that Drinfeld was able to explicitly construct the corresponding discrete series representations via l-adic étale cohomology groups. This work was later generalised by Deligne and Lusztig to all finite groups of Lie type, giving rise to Deligne-Lusztig theory.

In a similar vein, we would like to construct the representations affording the (smooth) characters of compact groups like GL(2,Zp), where Zp is the ring of p-adic integers. Deligne-Lusztig theory suggests hunting for these representations inside certain cohomology groups. In this talk, I will consider one such approach using a non-archimedean analogue of de Rham cohomology.

Fri, 18 Nov 2022
10:00
L6

Developing a method for testing the reactivity of silicon carbide (SiC) and silicon monoxide (SiO(g))

Harry Reynolds
(Elkem)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Abstract

Elkem is developing a new method for categorising the reactivity between silicon carbide (SiC) powder and silicon monoxide gas (SiO(g)). Experiments have been designed which pass SiO gas through a powdered bed of SiC inside of a heated crucible, resulting in a reaction between the two. The SiO gas is produced via a secondary reaction outside of the SiC bed. Both reactions require specific temperature and pressure constraints to occur. Therefore, we would like to mathematically model the temperature distribution and gas flow within the experimental set-up to provide insight into how we can control the process.

 

Complexities arise from:

  • Endothermic reactions causing heat sinks
  • Competing reactions beyond the two we desire
  • Dynamically changing properties of the bed, such as permeability
Thu, 17 Nov 2022

16:00 - 17:00
L3

Simulating Arbitrage-Free Implied Volatility Surfaces

Milena Vuletic
Abstract

We present a computationally tractable method for simulating arbitrage free implied volatility surfaces. Our approach conciliates static arbitrage constraints with a realistic representation of statistical properties of implied volatility co-movements.
We illustrate our method with two examples. First, we propose a dynamic factor model for the implied volatility surface, and show how our method may be used to remove static arbitrage from model scenarios. As a second example, we propose a nonparametric generative model for implied volatility surfaces based on a Generative Adversarial Network (GAN).

Thu, 17 Nov 2022

15:00 - 16:00
L5

On parametric integral transforms of certain tame functions

Tamara Servi
(Universit\'e Paris Diderot)
Abstract

We will construct several algebras of functions definable in R_{an,\exp} which are stable under parametric integration. 

Given one such algebra A, we will study the parametric Mellin and Fourier transforms of the functions in A. These are complex-valued oscillatory functions, thus we leave the realm of o-minimality. However, we will show that some of the geometric tameness of the functions in A passes on to their integral transforms.

Thu, 17 Nov 2022
14:00
L6

Dispersive Sum Rules in AdS${}_2$

Waltraut Knop
(Stony Brook)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Further Information

It is also possible to join online via Zoom.

Abstract

Dispersion relations for S-matrices and CFT correlators translate UV consistency into bounds on IR observables. In this talk, I will begin with briefly introducing dispersionrelations in 2D flat space which will guide the analogous discussion in AdS2/CFT1. I will introduce a set of functionals acting on the 1D CFT. These will allow us to prove bounds on higher-derivative couplings in weakly coupled non-gravitational EFTs in AdS2. At the leading order in the bulk-point limit, the bounds agree with the flat-space result. Furthermore we can compute the leading universal effect of finite AdS radius on the bounds.

Thu, 17 Nov 2022

14:00 - 15:00
L3

Ten years of Direct Multisearch

Ana Custodio
(NOVA School of Science and Technology)
Abstract

Direct Multisearch (DMS) is a well-known multiobjective derivative-free optimization class of methods, with competitive computational implementations that are often successfully used for benchmark of new algorithms and in practical applications. As a directional direct search method, its structure is organized in a search step and a poll step, being the latter responsible for its convergence. A first implementation of DMS was released in 2010. Since then, the algorithmic class has continued to be analyzed from the theoretical point of view and new improvements have been proposed for the numerical implementation. Worst-case-complexity bounds have been derived, a search step based on polynomial models has been defined, and parallelization strategies have successfully improved the numerical performance of the code, which has also shown to be competitive for multiobjective derivative-based problems. In this talk we will survey the algorithmic structure of this class of optimization methods, the main theoretical properties associated to it and report numerical experiments that validate its numerical competitiveness.

Thu, 17 Nov 2022

12:00 - 13:00
L1

Idealised and Real Contact Sets in Knots and other Tight Structures

Prof. John Maddocks
(École Polytechnique Fédérale de Lausanne (EPFL))
Further Information

Born in Scotland and a former member of the British Olympic sailing team, the mathematician obtained his doctorate in Oxford. After several years as professor of mathematics in Maryland, USA, he returned to Europe to the École Polytechnique Fédérale de Lausanne (EPFL), where he has worked for nearly 20 years.

John Maddocks is a prominent expert in the multiscale modeling of DNA, the nucleic acid-based biological molecule that carries genetic information. He is interested above all in the nanomechanical properties of DNA molecules. These properties determine how DNA is "packed" and stored in our cells.

Text adapted from TU Berlin

Abstract

It has been known for some time that the contact sets between
self-avoiding idealised tubes (i.e. with exactly circular, normal
cross-sections) in various highly compact, tight structures comprise
double lines of contact. I will re-visit those results for two canonical
examples, namely the orthogonal clasp and the ideal trefoil knot. I will
then show experimental and 3D FEM simulation data for deformable elastic
tubes (obtained within the group of Pedro Reis at the EPFL) which
reveals that the ideal contact set lines bound (in a non-rigorous sense)
the actual contact patches that arise in reality.

[1] The shapes of physical trefoil knots, P. Johanns, P. Grandgeorge, C.
Baek, T.G. Sano, J.H. Maddocks, P.M. Reis, Extreme Mechanics Letters 43
(2021), p. 101172, DOI:10.1016/j.eml.2021.101172
[2]  Mechanics of two filaments in tight orthogonal contact, P.
Grandgeorge, C. Baek, H. Singh, P. Johanns, T.G. Sano, A. Flynn, J.H.
Maddocks, and P.M. Reis, Proceedings of the National Academy of Sciences
of the United States of America 118, no. 15 (2021), p. e2021684118
DOI:10.1073/pnas.2021684118

Wed, 16 Nov 2022
16:00
L4

A brief introduction to higher representation theory

Hao Xu
(University of Göttingen)
Abstract

In recent years, a tend of higher category theory is growing from multiple areas of research throughout mathematics, physics and theoretical computer science. Guided by Cobordism Hypothesis, I would like to introduce some basics of `higher representation theory’, i.e. the part of higher category theory where we focus on the fundamental objects: `finite dimensional’ linear n-categories. If time permits, I will also introduce some recent progress in linear higher categories and motivations from condensed matter physics.

Tue, 15 Nov 2022
16:00
C1

Injective factors arising as discrete quantum group von Neumann algebras

Jacek Krajczok
(University of Glasgow)
Abstract

It is well known that if a group von Neumann algebra of a (nontrivial) discrete group is a factor, then it is a factor of type II_1. During the talk, I will answer the following question: which types appear as types of injective factors being group von Neumann algebras of discrete quantum groups (or looking from the dual perspective - von Neumann algebras of bounded functions on compact quantum groups)? An important object in our work is the subgroup of real numbers t for which the scaling automorphism tau_t is inner. This is joint work with Piotr Sołtan.

Tue, 15 Nov 2022

15:30 - 16:30
L6

Unitary Brownian motion, 2D log-correlated field and loop soups

Isao Sauzzede
(University of Warwick)
Abstract

I will present two examples of log-correlated fields in 2 dimensions. It is well known that the log-characteristic polynomial of a uniform unitary matrix converges toward a 1 dimensional log-correlated field, and our first example will be obtained from a dynamical version of this model. The second example will be obtained from a radically different construction, based on the Brownian loop soup that we will introduce. It will lead to a whole family of log-correlated fields. We will focus on the description of the behaviour of these objects, more than on rigorous details.

Tue, 15 Nov 2022
15:00
L5

Embedding spaces of split links

Rachael Boyd
Abstract

This is joint work with Corey Bregman. We study the homotopy type of embedding spaces of unparameterised links, inspired by work of Brendle and Hatcher. We obtain a simple description of the fundamental group of the embedding space, which I will describe for you. Our main tool is a homotopy equivalent semi-simplicial space of separating spheres. As I will explain, this is a combinatorial object that provides a gateway to studying the homotopy type of embedding spaces of split links via the homotopy type of their individual pieces. 

Tue, 15 Nov 2022

14:00 - 15:00
L5

Unavoidable order-size pairs in graphs and hypergraphs

Maria Axenovich
(KIT)
Abstract

A graph has a pair $(m,f)$ if it has an induced subgraph on $m$ vertices and $f$ edges. We write $(n,e)\rightarrow (m,f)$  if any graph on $n$ vertices and $e$ edges has a pair $(m,f)$.  Let  $$S(n,m,f)=\{e: ~(n,e)\rightarrow (m,f)\} ~{\rm and}$$     $$\sigma(m,f) =   \limsup_{n\rightarrow \infty}\frac{ |S(n,m,f)|}{\binom{n}{2}}.$$ These notions were first introduced and investigated by Erdős, Füredi, Rothschild, and Sós. They found five pairs $(m,f)$ with  $\sigma(m,f)=1$ and showed that for all other pairs $\sigma(m,f)\leq 2/3$.  We extend these results in two directions.

First, in a joint work with Weber, we show that not only $\sigma(m,f)$ can be zero, but also $S(n,m,f)$  could be empty for some pairs $(m,f)$ and any sufficiently large $n$. We call such pairs $(m,f)$ absolutely avoidable.

Second, we consider a natural analogue $\sigma_r(m,f)$ of $\sigma(m,f)$ in the setting of $r$-uniform hypergraphs.  Weber showed that for any $r\geq 3$ and  $m>r$,  $\sigma_r(m,f)=0$ for most values of $f$.  Surprisingly, it was not immediately clear whether there are nontrivial pairs $(m,f)$,  $(f\neq 0$, $f\neq \binom{m}{r}$,  $r\geq 3$),  for which $\sigma_r(m,f)>0$. In a joint work with Balogh, Clemen, and Weber we show that $\sigma_3(6,10)>0$ and conjecture that in the $3$-uniform case $(6,10)$ is the only such pair.

Tue, 15 Nov 2022
14:00
L6

Higher Dimensional Lubin-Tate Formal Group Laws

James Taylor
(University of Oxford)
Abstract

In this talk we will present some work in progress generalising Lubin-Tate formal group laws to higher dimensions. There have been some other generalisations, but ours is different in that the ring over which the formal group law is defined changes as the dimension increases. We will state some conjectures about these formal group laws, including their relationship to the Drinfeld tower over the p-adic upper half plane, and provide supporting evidence for these conjectures.

Tue, 15 Nov 2022

12:30 - 13:00
C3

A Hele-Shaw Newton's cradle and Reciprocity in Fluids

Daniel Booth and Matthew Cotton
Abstract

A Hele-Shaw Newton's cradle: Circular bubbles in a Hele-Shaw channel. (Daniel Booth)

We present a model for the motion of approximately circular bubbles in a Hele-Shaw cell. The bubble velocity is determined by a balance between the hydrodynamic pressures from the external flow and the drag due to the thin films above and below the bubble. We find that the qualitative behaviour depends on a dimensionless parameter and is found to agree well with experimental observations.  Furthermore, we show how the effects of interaction with cell boundaries and/or other bubbles also depend on the value of this dimensionless parameter For example, in a train of three identical bubbles travelling along the centre line, the middle bubble either catches up with the one in front or is caught by the one behind, forming what we term a Hele-Shaw Newton's cradle.
 

Reciprocity in Fluids (Matthew Cotton)

Reciprocity is a useful, and often underused, way to calculate integrated quantities when a to solution to a related problem is known. In the remaining time, I will overview these ideas and give some example use cases

Mon, 14 Nov 2022
16:00
L4

The Weil bound

Jared Duker Lichtman
(University of Oxford)
Abstract

The Riemann hypothesis (RH) is one of the great open problems in
mathematics. It arose from the study of prime numbers in an analytic
context, and—as often occurs in mathematics—developed analogies in an
algebraic setting, leading to the influential Weil conjectures. RH for
curves over finite fields was proven in the 1940’s by Weil using
algebraic-geometric methods, and later reproven by Stepanov and
Bombieri by elementary means. In this talk, we use RH for curves to
prove the Weil bound for certain (Kloosterman) exponential sums, which
in turn is a fundamental tool in the study of prime numbers.

Mon, 14 Nov 2022

15:30 - 16:30
L1

Minimum curvature flow and martingale exit times

Johannes Ruf
Abstract

What is the largest deterministic amount of time T that a suitably normalized martingale X can be kept inside a convex body K in Rd? We show, in a viscosity framework, that T equals the time it takes for the relative boundary of K to reach X(0) as it undergoes a geometric flow that we call (positive) minimum curvature flow. This result has close links to the literature on stochastic and game representations of geometric flows. Moreover, the minimum curvature flow can be viewed as an arrival time version of the Ambrosio–Soner codimension-(d − 1) mean curvature flow of the 1-skeleton of K. We present very preliminary sampling-based numerical approximations to the solution of the corresponding PDE. The numerical part is work in progress.

This work is based on a collaboration with Camilo Garcia Trillos, Martin Larsson, and Yufei Zhang.

Mon, 14 Nov 2022

15:30 - 16:30
L5

CANCELLED -- Classifying rigid Frobenius algebras in Dijkgraaf-Witten categories and their local modules

Ana Ros Camacho
Abstract

THIS TALK IS CANCELLED DUE TO ILLNESS -- In this talk I will present classification results for rigid Frobenius algebras in Dijkgraaf–Witten categories ℨ( Vec(G)ᵚ ) over a field of arbitrary characteristic, generalising existing results by Davydov-Simmons. For this purpose, we provide a braided Frobenius monoidal functor from ℨ ( Vect(H)ᵚˡᴴ ) to ℨ( Vec(G)ᵚ ) for any subgroup H of G. I will also discuss about their categories of local modules, which are modular tensor categories  by results of Kirillov–Ostrik in the semisimple case and Laugwitz–Walton in the general case. Joint work with Robert Laugwitz (Nottingham) and Sam Hannah (Cardiff).

Mon, 14 Nov 2022
14:15
L5

K-theoretic DT/PT invariants on Calabi-Yau 4-(orbi)folds

Sergej Monavari
(École Polytechnique Fédérale de Lausanne (EPFL))
Abstract

Donaldson-Thomas theory is classically defined for moduli spaces of sheaves over a Calabi-Yau threefold. Thanks to recent foundational work of Cao-Leung, Borisov-Joyce and Oh-Thomas, DT theory has been extended to Calabi-Yau 4-folds. We discuss how, in this context, one can define natural K-theoretic refinements of Donaldson-Thomas invariants (counting sheaves on Hilbert schemes) and Pandharipande-Thomas invariants (counting sheaves on moduli spaces of stable pairs) and how — conjecturally — they are related. Finally, we introduce an extension of DT invariants to Calabi-Yau 4-orbifolds, and propose a McKay-type correspondence, which we expect to be suitably interpreted as a wall-crossing phenomenon. Joint work (in progress) with Yalong Cao and Martijn Kool.

Mon, 14 Nov 2022
14:00
L4

A dynamical system perspective of optimization in data science

Jalal Fadili
(CNRS-ENSICAEN-Université Caen)
Abstract

In this talk, I will discuss and introduce deep insight from the dynamical system perspective to understand the convergence guarantees of first-order algorithms involving inertial features for convex optimization in a Hilbert space setting.

Such algorithms are widely popular in various areas of data science (data processing, machine learning, inverse problems, etc.).
They can be viewed discrete as time versions of an inertial second-order dynamical system involving different types of dampings (viscous damping,  Hessian-driven geometric damping).

The dynamical system perspective offers not only a powerful way to understand the geometry underlying the dynamic, but also offers a versatile framework to obtain fast, scalable and new algorithms enjoying nice convergence guarantees (including fast rates). In addition, this framework encompasses known algorithms and dynamics such as the Nesterov-type accelerated gradient methods, and the introduction of time scale factors makes it possible to further accelerate these algorithms. The framework is versatile enough to handle non-smooth and non-convex objectives that are ubiquituous in various applications.

Mon, 14 Nov 2022
13:00

Modern QFT Advances & Real-World Gravity

Michele Levi
(Oxford )
Abstract

Only a decade ago the detection of gravitational waves seemed like a fantasy to most, and merely a handful of 
people in the world believed in the validity and even great potential of using the powerful framework of EFT, and 
more generally -- advances in QFT to study gravity theory for real-world gravitational waves. I will present the 
significant advancement accomplished uniquely via the tower of EFTs with the EFT of spinning gravitating objects, 
and the incorporation of QFT advances, which my work has pioneered since those days. Today, only 6 years after 
the official birth of precision gravity with a rapidly growing influx of gravitational-wave data, and a decade of great 
theoretical progress, the power and insight of using modern QFT for real-world gravity have become incontestable.

Fri, 11 Nov 2022
16:00
C4

The Dark Dimension

Joseph McGovern
Further Information

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Fri, 11 Nov 2022

16:00 - 17:00
L1

Managing your supervisor

Eva Antonopoulou
Abstract

Your supervisor is the person you will interact with on a scientific level most of all during your studies here. As a result, it is vital that you establish a good working relationship. But how should you do this? In this session we discuss tips and tricks for getting the most out of your supervisions to maximize your success as a researcher. Note that this session will have no faculty in the audience in order to allow people to speak openly about their experiences. 

Fri, 11 Nov 2022

14:00 - 15:00
L3

Identifying cell-to-cell variability using mathematical and statistical modelling

Dr Alex Browning
(Dept of Mathematics, University of Oxford)
Abstract

Cell-to-cell variability is often a primary source of variability in experimental data. Yet, it is common for mathematical analysis of biological systems to neglect biological variability by assuming that model parameters remain fixed between measurements. In this two-part talk, I present new mathematical and statistical tools to identify cell-to-cell variability from experimental data, based on mathematical models with random parameters. First, I identify variability in the internalisation of material by cells using approximate Bayesian computation and noisy flow cytometry measurements from several million cells. Second, I develop a computationally efficient method for inference and identifiability analysis of random parameter models based on an approximate moment-matched solution constructed through a multivariate Taylor expansion. Overall, I show how analysis of random parameter models can provide more precise parameter estimates and more accurate predictions with minimal additional computational cost compared to traditional modelling approaches.

Fri, 11 Nov 2022

12:00 - 15:45
L2

Centre for Topological Data Analysis Centre Meeting

Adam Brown, Heather Harrington, Živa Urbančič, David Beers.
(University of Oxford, Mathematical Institute)
Further Information

Details of speakers and schedule will be posted here nearer the time. 

Abstract

Here is the program.

Fri, 11 Nov 2022

12:00 - 13:00
N3.12

On quivers, Auslander algebras and derived equivalences

Ilaria di Dedda
(Kings College London)
Abstract

Auslander-Reiten theory provides lots of powerful tools to study algebras of finite representation type. One of these is Auslander correspondence, a well-known result establishing a bijection between the class of algebras of finite representation type and their corresponding Auslander algebras. I will present these classical results in a key example: the class of algebras associated to quivers of type A_n. I will talk about well-known results regarding their derived equivalence with another class of algebras, and I will present a more recent result regarding the perfect derived category of the Auslander algebras of type A_n.

Fri, 11 Nov 2022
10:00

Fast solver for electric motor design

Daniel Bates
(Monumo)
Abstract

Monumo is interested in computing physical properties of electric motors (torque, efficiency, back EMF) from their designs (shapes, materials, currents). This involves solving Maxwell's equations (non-linear PDEs). They currently compute the magnetic flux, and then use that to compute the other properties of interest. The main challenge they face is that they want to do this for many, many different designs. There seems to be lots of redundancy here, but exploiting it has proved difficult.

Thu, 10 Nov 2022
16:00
L5

Height bounds for isogeny coincidences between families of elliptic curves

Martin Orr
Abstract

The Zilber-Pink conjecture predicts that there should be only finitely
many algebraic numbers t such that the three elliptic curves with
j-invariants t, -t, 2t are all isogenous to each other.  Using previous
work of Habegger and Pila, it suffices to prove a height bound for such
t.  I will outline the proof of this height bound by viewing periods of
the elliptic curves as values of G-functions.  An innovation in this
work is that both complex and p-adic periods are required.  This is
joint work with Christopher Daw.

Thu, 10 Nov 2022

16:00 - 17:00
L3

Sensitivity of robust optimization over an adapted Wasserstein ambiguity set

Yifan Jiang
Abstract

In this talk, we consider the sensitivity to the model uncertainty of an optimization problem. By introducing adapted Wasserstein perturbation, we extend the classical results in a static setting to the dynamic multi-period setting. Under mild conditions, we give an explicit formula for the first order approximation to the value function. An optimization problem with a cost of weak type will also be discussed.

Thu, 10 Nov 2022
15:00
L3

Compactified Universal Jacobians over Stacks of Stable Curves via GIT

George Cooper
(Oxford)
Abstract

Associated to any smooth projective curve C is its degree d Jacobian variety, parametrising isomorphism classes of degree d line bundles on C. Letting the curve vary as well, one is led to the universal Jacobian stack. This stack admits several compactifications over the stack of marked stable curves, depending on the choice of a stability condition. In this talk I will introduce these compactified universal Jacobians, and explain how their moduli spaces can be constructed using Geometric Invariant Theory (GIT). This talk is based on arXiv:2210.11457.

Thu, 10 Nov 2022
14:00
S1.37

Non-invertible Symmetries in 5d Chern-Simons theories

Eduardo Garcia-Valdecasas
(Harvard)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Further Information

It is also possible to join online via Zoom.

Abstract

Electric 1-form symmetries are generically broken in gauge theories with Chern-Simons terms. In this talk we discuss how infinite subsets of these symmetries become non-invertible topological defects. Time permitting we will also discuss generalizations and applications to the Swampland program in relation to the completeness hypothesis.

Thu, 10 Nov 2022

14:00 - 15:00
L3

Primal dual methods for Wasserstein gradient flows

José Carrillo
(University of Oxford)
Abstract

Combining the classical theory of optimal transport with modern operator splitting techniques, I will present a new numerical method for nonlinear, nonlocal partial differential equations, arising in models of porous media,materials science, and biological swarming. Using the JKO scheme, along with the Benamou-Brenier dynamical characterization of the Wasserstein distance, we reduce computing the solution of these evolutionary PDEs to solving a sequence of fully discrete minimization problems, with strictly convex objective function and linear constraint. We compute the minimizer of these fully discrete problems by applying a recent, provably convergent primal dual splitting scheme for three operators. By leveraging the PDE’s underlying variational structure, ourmethod overcomes traditional stability issues arising from the strong nonlinearity and degeneracy, and it is also naturally positivity preserving and entropy decreasing. Furthermore, by transforming the traditional linear equality constraint, as has appeared in previous work, into a linear inequality constraint, our method converges in fewer iterations without sacrificing any accuracy. We prove that minimizers of the fully discrete problem converge to minimizers of the continuum JKO problem as the discretization is refined, and in the process, we recover convergence results for existing numerical methods for computing Wasserstein geodesics. Simulations of nonlinear PDEs and Wasserstein geodesics in one and two dimensions that illustrate the key properties of our numerical method will be shown.

Thu, 10 Nov 2022

12:00 - 13:00
L6

Sustained oscillations in hyperbolic-parabolic systems of viscoelasticity

Athanasios Tzavaras
(KAUST)
Abstract

This talk is motivated by work on the existence theory for viscoelasticity of Kelvin-Voigt type with non-convex stored energies (joint with K. Koumatos (U. of Sussex), C. Lattanzio and S. Spirito (U. of LAquila)), which shows propagation of H1-regularity for the deformation gradient of weak solutions for semiconvex stored energies. It turns out that weak solutions with deformation gradient in H1 are in fact unique in two-space dimensions, providing a striking analogy to corresponding results in the theory of 2D Euler equations with bounded vorticity.

While weak solutions still exist for initial data in L2, oscillations on the deformation gradi- ent can now persist and propagate in time. This can be seen via a counterexample indicating that for non-monotone stress-strain relations in 1-d oscillations of the strain lead to solutions with sustained oscillations. The existence of sustained oscillations in hyperbolic-parabolic system is then studied in several examples motivated by viscoelasticity and thermoviscoelas- ticity. Sufficient conditions for persistent oscillations are developed for linear problems, and examples in some nonlinear systems of interest. In several space dimensions oscillatory exam- ples are associated with lack of rank-one convexity of the stored energy. Nonlinear examples in models with thermal effects are also developed.

Thu, 10 Nov 2022

12:00 - 13:00
L1

Plant morphogenesis across scales

Prof. Arezki Boudaoud
(Ecole Polytechnique)
Further Information

Biography

After a doctorate in physics at the École normale supérieure in Paris, Arezki Boudaoud completed his post-doctorate in the Mathematics Department of the prestigious MIT (Massachusetts Institute of Technology). He then returned to the Statistical Physics Laboratory of the ENS ULM as a research officer. His work focused on liquid films and thin solids. In parallel, he began to take an interest in morphogenesis in the living and identified the contributions of the mechanical forces to the growth of yeast and the development of plants.

In 2009 the physicist switched to study biology: he joined the École normale supérieure de Lyon as a professor in the Department of Biology and has since led an interdisciplinary team in the Reproduction and development of Plants (RDP) laboratory and the Joliot-Curie laboratory (LJC). The team, entitled "Biophysics and Development", works to understand the mechanisms of morphogenesis in plants, combining tools of biology and physics.

Taken from ENS Lyon website

Abstract

What sets the size and form of living organisms is still, by large, an open question. During this talk, I will illustrate how we are addressing this question by examining the links between spatial scales, from subcellular to organ, both experimentally and theoretically. First, I will present how we are deriving continuous plant growth mechanical models using homogenisation. Second, I will discuss how directionality of organ growth emerges from cell level. Last, I will present predictions of fluctuations at multiple scales and experimental tests of these predictions, by developing a data analysis approach that is broadly relevant to geometrically disordered materials.

 

Wed, 09 Nov 2022
16:00
L4

Persistent homology in theory and practice

Katherine Benjamin
(University of Oxford)
Abstract

Persistent homology is both a powerful framework for data science and a fruitful source of mathematical questions. Here, we will give an introduction to both single-parameter and multiparameter persistent homology. We will see some examples of how topology has been successfully applied to the real world, and also explore some of the pure-mathematical ideas that arise from this new perspective.

Tue, 08 Nov 2022
16:00
C1

Interacting Systems – where Analysis, PDEs and Probability meet

Amit Einav
(University of Durham)
Abstract

We are surrounded by systems that involve many elements and the interactions between them: the air we breathe, the galaxies we watch, herds of animals roaming the African planes and even us – trying to decide on whom to vote for.

As common as such systems are, their mathematical investigation is far from simple. Motivated by the realisation that in most cases we are not truly interested in the individual behaviour of each and every element of the system but in the average behaviour of the ensemble and its elements, a new approach emerged in the late 1950s - the so-called mean field limits approach. The idea behind this approach is fairly intuitive: most systems we encounter in real life have some underlying pattern – a correlation relation between its elements. Giving a mathematical interpretation to a given phenomenon and its emerging pattern with an appropriate master/Liouville equation, together with such correlation relation, and taking into account the large number of elements in the system results in a limit equation that describes the behaviour of an average limit element of the system. With such equation, one hopes, we could try and understand better the original ensemble.

In our talk we will give the background to the formation of the ideas governing the mean field limit approach and focus on one of the original models that motivated the birth of the field – Kac’s particle system. We intend to introduce Kac’s model and its associated (asymptotic) correlation relation, chaos, and explore attempts to infer information from it to its mean field limit – The Boltzmann-Kac equation.

Tue, 08 Nov 2022

15:30 - 16:30
L6

Gaussian multiplicative chaos measures, Painlevé equations, and conformal blocks

Harini Desiraju
(University of Sydney)
Abstract

Conformal blocks appear in several areas of mathematical physics from random geometry to black hole physics. A probabilistic notion of conformal blocks using gaussian multiplicative chaos measures was recently formulated by Promit Ghosal, Guillaume Remy, Xin Sun, Yi Sun (arxiv:2003.03802). In this talk, I will show that the semiclassical limit of the probabilistic conformal blocks recovers a special case of the elliptic form of Painlevé VI equation, thereby proving a conjecture by Zamolodchikov. This talk is based on an upcoming paper with Promit Ghosal and Andrei Prokhorov.

Tue, 08 Nov 2022
15:00
L5

Hyperbolic one-relator groups

Marco Linton
Abstract

Since their introduction by Gromov in the 80s, a wealth of tools have been developed to study hyperbolic groups. Thus, when studying a class of groups, a characterisation of those that are hyperbolic can be very useful. In this talk, we will turn to the class of one-relator groups. In previous work, we showed that a one-relator group not containing any Baumslag--Solitar subgroups is hyperbolic, provided it has a Magnus hierarchy in which no one-relator group with a so called `exceptional intersection' appears. I will define one-relator groups with exceptional intersection, discuss the aforementioned result and will then provide a characterisation of the hyperbolic one-relator groups with exceptional intersection. Finally, I will then discuss how this characterisation can be used to establish properties for all one-relator groups.

Tue, 08 Nov 2022

14:30 - 15:00
L3

Rational approximation of functions with branch point singularities

Astrid Herremans
(KU Leuven)
Abstract

Rational functions are able to approximate functions containing branch point singularities with a root-exponential convergence rate. These appear for example in the solution of boundary value problems on domains containing corners or edges. Results from Newman in 1964 indicate that the poles of the optimal rational approximant are exponentially clustered near the branch point singularities. Trefethen and collaborators use this knowledge to linearize the approximation problem by fixing the poles in advance, giving rise to the Lightning approximation. The resulting approximation set is however highly ill-conditioned, which raises the question of stability. We show that augmenting the approximation set with polynomial terms greatly improves stability. This observation leads to a  decoupling of the approximation problem into two regimes, related to the singular and the smooth behaviour of the function. In addition, adding polynomial terms to the approximation set can result in a significant increase in convergence speed. The convergence rate is however very sensitive to the speed at which the clustered poles approach the singularity.

Tue, 08 Nov 2022

14:00 - 15:00
L5

On the Ryser-Buraldi-Stein conjecture

Richard Montgomery
(University of Warwick)
Abstract

A Latin square of order n is an n by n grid filled with n different symbols so that every symbol occurs exactly once in each row and each column, while a transversal in a Latin square is a collection of cells which share no row, column or symbol. The Ryser-Brualdi-Stein conjecture states that every Latin square of order n should have a transversal with n-1 elements, and one with n elements if n is odd. In 2020, Keevash, Pokrovskiy, Sudakov and Yepremyan improved the long-standing best known bounds on this conjecture by showing that a transversal with n-O(log n/loglog n) elements exists in any Latin square of order n. In this talk, I will discuss how to show, for large n, that a transversal with n-1 elements always exists.

Tue, 08 Nov 2022
14:00
L6

Generalising Vogan's conjecture across Schur-Weyl duality

Kieran Calvert
(University of Manchester)
Abstract

We outline Dirac cohomology for Lie algebras and Vogan’s conjecture. We then cover some basic material on Schur-Weyl duality and Arakawa-Suzuki functors. Finishing with current efforts and results on generalising Vogan’s conjecture to a Schur-Weyl duality setting. This would relate the centre of a Lie algebra with the centre of the relevant tantaliser algebra. We finish by considering a unitary module X and giving a bound on the action of the tantalizer algebra.

Tue, 08 Nov 2022

14:00 - 14:30
L3

Computing functions of matrices via composite rational functions

Yuji Nakatsukasa
(Oxford University)
Abstract

Most algorithms for computing a matrix function $f(A)$ are based on finding a rational (or polynomial) approximant $r(A)≈f(A)$ to the scalar function on the spectrum of $A$. These functions are often in a composite form, that is, $f(z)≈r(z)=r_k(⋯r_2(r_1(z)))$ (where $k$ is the number of compositions, which is often the iteration count, and proportional to the computational cost); this way $r$ is a rational function whose degree grows exponentially in $k$. I will review algorithms that fall into this category and highlight the remarkable power of composite (rational) functions.

Tue, 08 Nov 2022
12:00
Virtual

Bi-twistors, G_2*, and Split-Octonions

Roger Penrose
(Oxford University)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Abstract

Standard twistor theory involves a complex projective
3-space PT which naturally divides into two halves PT+
and PT, joined by their common 5-real-dimensional
boundary PN. However, this splitting has two quite
different basic physical interpretations, namely
positive/negative helicity and positive/negative
frequency, which ought not to be confused in the
formalism, and the notion of “bi-twistors” is introduced
to resolve this issue. It is found that quantized bi-
twistors have a previously unnoticed G2* structure,
which enables the split-octonion algebra to be directly
formulated in terms of quantized bi-twistors, once the
appropriate complex structure is incorporated.