14:30
Rational neural networks
Abstract
A link for this talk will be sent to our mailing list a day or two in advance. If you are not on the list and wish to be sent a link, please send email to @email.
A link for this talk will be sent to our mailing list a day or two in advance. If you are not on the list and wish to be sent a link, please send email to @email.
In 2013, Reeder–Yu gave a construction of supercuspidal representations by starting with stable characters coming from the shallowest depth of the Moy–Prasad filtration. In this talk, we will be diving deeper—but not too deep. In doing so, we will construct examples of supercuspidal representations coming from a larger class of “shallow” characters. Using methods similar to Reeder–Yu, we can begin to make predictions about the Langlands parameters for these representations.
Here we propose a new method to compare the modular structure of a pair of node-aligned networks. The majority of current methods, such as normalized mutual information, compare two node partitions derived from a community detection algorithm yet ignore the respective underlying network topologies. Addressing this gap, our method deploys a community detection quality function to assess the fit of each node partition with respect to the other network's connectivity structure. Specifically, for two networks A and B, we project the node partition of B onto the connectivity structure of A. By evaluating the fit of B's partition relative to A's own partition on network A (using a standard quality function), we quantify how well network A describes the modular structure of B. Repeating this in the other direction, we obtain a two-dimensional distance measure, the bi-directional (BiDir) distance. The advantages of our methodology are three-fold. First, it is adaptable to a wide class of community detection algorithms that seek to optimize an objective function. Second, it takes into account the network structure, specifically the strength of the connections within and between communities, and can thus capture differences between networks with similar partitions but where one of them might have a more defined or robust community structure. Third, it can also identify cases in which dissimilar optimal partitions hide the fact that the underlying community structure of both networks is relatively similar. We illustrate our method for a variety of community detection algorithms, including multi-resolution approaches, and a range of both simulated and real world networks.
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
Let $X$ be a random variable, taking values in $\{1,…,n\}$, with standard deviation $\sigma$ and let $f_X$ be its probability generating function. Pemantle conjectured that if $\sigma$ is large and $f_X$ has no roots close to 1 in the complex plane then $X$ must approximate a normal distribution. In this talk, I will discuss a complete resolution of Pemantle's conjecture. As an application, we resolve a conjecture of Ghosh, Liggett and Pemantle by proving a multivariate central limit theorem for, so called, strong Rayleigh distributions. I will also discuss how these sorts of results shed light on random variables that arise naturally in combinatorial settings. This talk is based on joint work with Marcus Michelen.
A link for this talk will be sent to our mailing list a day or two in advance. If you are not on the list and wish to be sent a link, please send email to @email.
Michael Coughlan (with Sam Howison, Ian Hewitt, Andrew Wells)
Arctic sea ice forms a thin but significant layer at the ocean surface, mediating key climate feedbacks. During summer, surface melting produces considerable volumes of water, which collect on the ice surface in ponds. These ponds have long been suggested as a contributing factor to the discrepancy between observed and predicted sea ice extent. When viewed at large scales ponds have a complicated, approximately fractal geometry and vary in area from tens to thousands of square meters. Increases in pond depth and area lead to further increases in heat absorption and overall melting, contributing to the ice-albedo feedback.
Previous modelling work has focussed either on the physics of individual ponds or on the statistical behaviour of systems of ponds. In this talk I present a physically-based network model for systems of ponds which accounts for both the individual and collective behaviour of ponds. Each pond initially occupies a distinct catchment basin and evolves according to a mass-conserving differential equation representing the melting dynamics for bare and water-covered ice. Ponds can later connect together to form a network with fluxes of water between catchment areas, constrained by the ice topography and pond water levels.
I use the model to explore how the evolution of pond area and hence melting depends on the governing parameters, and to explore how the connections between ponds develop over the melt season. Comparisons with observations are made to demonstrate the ways in which the model qualitatively replicates properties of pond systems, including fractal dimension of pond areas and two distinct regimes of pond complexity that are observed during their development cycle.
Different perimeter-area relationships exist for ponds in the two regimes. The model replicates these relationships and exhibits a percolation transition around the transition between these regimes, a facet of pond behaviour suggested by previous studies. The results reinforce the findings of these studies on percolation thresholds in pond systems and further allow us to constrain pond coverage at this threshold - an important quantity in measuring the scale and effects of the ice-albedo feedback.
After a review of Batalin-Vilkovisky formalism and homotopy algebras, we discuss how these structures emerge in quantum field theory and gravity. We focus then on the application of these sophisticated mathematical tools to scattering amplitudes (both tree- and loop-level) and to the understanding of the dualities between gauge theories and gravity, highlighting generalizations of old results and presenting new ones.
In this talk I will give an introduction to random multiplicative functions, and cover the recent developments in this area. I will also explain how RMF's are connected to some of the important open problems in Analytic Number Theory.
The Ricci flow on a surface is an intrinsic evolution of the metric converging to a constant curvature metric within the conformal class. It can be seen as an infinite-dimensional gradient flow. We introduce a natural 'Langevin' version of that flow, thus constructing an SPDE with invariant measure expressed in terms of Liouville Conformal Field Theory.
Joint work with Hao Shen (Wisconsin).
The main result is the existence of smooth, properly embedded 3-discs in S¹ × D³ that are not smoothly isotopic to {1} × D³. We describe a 2-variable Laurent polynomial invariant of 3-discs in S¹ × D³. This allows us to show that, when taken up to isotopy, such 3-discs form an abelian group of infinite rank. Joint work with David Gabai.
We describe how Smith theory applies in the setting of Hamiltonian Floer homology filtered by the action functional, and provide applications to questions regarding Hamiltonian diffeomorphisms, including the Hofer-Zehnder conjecture on the existence of infinitely many periodic points and a question of McDuff-Salamon on Hamiltonian diffeomorphisms of finite order.
All five-dimensional non-abelian gauge theories have a U(1)U(1)IU(1) global symmetry associated with instantonic particles. I will describe a mixed ’t Hooft anomaly between this and other global symmetries of the theory, namely the one-form center symmetry or ordinary flavor symmetry for theories with fundamental matter. I will explore some general dynamical properties of the candidate phases implied by the anomaly, and apply our results to supersymmetric gauge theories in five dimensions, analysing the symmetry enhancement patterns occurring at their conjectured RG fixed points.
In this session we discuss techniques to get the most out of your supervision sessions and tips on how to work with different personalities and use your supervisor's skills to your advantage. The session will be run by DPhil students and discussion among students during the session is encouraged.
Polynomial rings $R[X]$ are a fundamental construction in commutative algebra, under which Hilbert's basis theorem controls a finiteness property: being Noetherian. We will describe the picture for the non-commutative world; this leads us towards other interesting finiteness conditions.
We explore general constraints from unitarity, defect superconformal symmetry and locality of bulk-defect couplings to classify possible superconformal defects in superconformal field theories (SCFT) of spacetime dimensions d>2. Despite the general absence of locally conserved currents, the defect CFT contains new distinguished operators with protected quantum numbers that account for the broken bulk symmetries. Consistency with the preserved superconformal symmetry and unitarity requires that such operators arrange into unitarity multiplets of the defect superconformal algebra, which in turn leads to nontrivial constraints on what kinds of defects are admissible in a given SCFT. We will focus on the case of superconformal lines in this talk and comment on several interesting implications of our analysis, such as symmetry-enforced defect conformal manifolds, defect RG flows and possible nontrivial one-form symmetries in various SCFTs.
Influenza viruses infect millions of individuals each year and cause a significant amount of morbidity and mortality. Understanding how the virus spreads within the lung, how efficacious host immune control is, and how each influences acute lung injury and disease severity is critical to combat the infection. We used an integrative model-experiment exchange to establish the dynamical connections between viral loads, infected cells, CD8+ T cells, lung injury, and disease severity. Our model predicts that infection resolution is sensitive to CD8+ T cell expansion, that there is a critical T cell magnitude needed for efficient resolution, and that the rate of T cell-mediated clearance is dependent on infected cell density.
We validated the model through a series of experiments, including CD8 depletion and whole lung histomorphometry. This showed that the infected area of the lung matches the model-predicted infected cell dynamics, and that the resolved area of the lung parallels the relative CD8 dynamics. Additional analysis revealed a nonlinear relation between disease severity, inflammation, and lung injury. These novel links between important host-pathogen kinetics and pathology enhance our ability to forecast disease progression.
Differential equations and neural networks are two of the most widespread modelling paradigms. I will talk about how to combine the best of both worlds through neural differential equations. These treat differential equations as a learnt component of a differentiable computation graph, and as such integrates tightly with current machine learning practice. Applications are widespread. I will begin with an introduction to the theory of neural ordinary differential equations, which may for example be used to model unknown physics. I will then move on to discussing recent work on neural controlled differential equations, which are state-of-the-art models for (arbitrarily irregular) time series. Next will be some discussion of neural stochastic differential equations: we will see that the mathematics of SDEs is precisely aligned with the machine learning of GANs, and thus NSDEs may be used as generative models. If time allows I will then discuss other recent work, such as how the training of neural differential equations may be sped up by ~40% by tweaking standard numerical solvers to respect the particular nature of the differential equations. This is joint work with Ricky T. Q. Chen, Xuechen Li, James Foster, and James Morrill.
We return this term to our usual flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics.
We revisit the tears of wine problem for thin films in
water-ethanol mixtures and present a new model for the climbing
dynamics. The new formulation includes a Marangoni stress balanced by
both the normal and tangential components of gravity as well as surface
tension which lead to distinctly different behavior. The combined
physics can be modeled mathematically by a scalar conservation law with
a nonconvex flux and a fourth order regularization due to the bulk
surface tension. Without the fourth order term, shock solutions must
satisfy an entropy condition - in which characteristics impinge on the
shock from both sides. However, in the case of a nonconvex flux, the
fourth order term is a singular perturbation that allows for the
possibility of undercompressive shocks in which characteristics travel
through the shock. We present computational and experimental evidence
that such shocks can happen in the tears of wine problem, with a
protocol for how to observe this in a real life setting.
It has long been known that many elliptic partial differential equations can be reformulated as Fredholm integral equations of the second kind on the boundaries of their domains. The kernels of the resulting integral equations are weakly singular, which has historically made their numerical solution somewhat onerous, requiring the construction of detailed and typically sub-optimal quadrature formulas. Recently, a numerical algorithm for constructing generalized Gaussian quadratures was discovered which, given 2n essentially arbitrary functions, constructs a unique n-point quadrature that integrates them to machine precision, solving the longstanding problem posed by singular kernels.
When the domains have corners, the solutions themselves are also singular. In fact, they are known to be representable, to order n, by a linear combination (expansion) of n known singular functions. In order to solve the integral equation accurately, it is necessary to construct a discretization such that the mapping (in the L^2-sense) from the values at the discretization points to the corresponding n expansion coefficients is well-conditioned. In this talk, we present exactly such an algorithm, which is optimal in the sense that, given n essentially arbitrary functions, it produces n discretization points, and for which the resulting interpolation formulas have condition numbers extremely close to one.
---
A link for this talk will be sent to our mailing list a day or two in advance. If you are not on the list and wish to be sent a link, please send email to @email.
Is there a secret formula for becoming rich? Or for happiness? Or for becoming popular? Or for self-confidence and good judgement? David Sumpter answer these questions with an emphatic ‘Yes!' All YOU need are The Ten Equations.
In this lecture David will reveal three of these: the confidence equation that helps gamblers know when they have a winning strategy; the influencer equation that shapes our social interactions; and the learning equation that YouTube used to get us addicted to their videos. A small group of mathematicians have used these equations to revolutionise our world. Now you can use them too to better manage your time and make money, have a more balanced approach to your popularity and even to become a nicer person.
To order the book 'The Ten Equations That Rule the World' signed by David Sumpter from Blackwell's Bookshop, email @email by 15 November and they will provide you with all the information you need.
David Sumpter is Professor of Applied Mathematics at the University of Uppsala, Sweden.
Watch online (no need to register):
Oxford Mathematics Twitter
Oxford Mathematics Facebook
Oxford Mathematics Livestream
Oxford Mathematics YouTube
The Oxford Mathematics Public Lectures are generously supported by XTX Markets.
[[{"fid":"59746","view_mode":"media_square","fields":{"format":"media_square","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"format":"media_square","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"class":"media-element file-media-square","data-delta":"1"}}]]
'Quasi-isometric rigidity' in group theory is the slogan for questions of the following nature: let A be some class of groups (e.g. finitely presented groups). Suppose an abstract group H is quasi-isometric to a group in A: does it imply that H is in A? Such statements link the coarse geometry of a group with its algebraic structure.
Much is known in the case A is some class of lattices in a given Lie group. I will present classical results and outline ideas in their proofs, emphasizing the geometric nature of the proofs. I will focus on one key ingredient, the quasi-flat rigidity, and discuss some geometric objects that come into play, such as neutered spaces, asymptotic cones and buildings. I will end the talk with recent developments and possible generalizations of these results and ideas.
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
In 1943, Hadwiger conjectured that every graph with no Kt minor is $(t-1)$-colorable for every $t\geq 1$. In the 1980s, Kostochka and Thomason independently proved that every graph with no $K_t$ minor has average degree $O(t(\log t)^{1/2})$ and hence is $O(t(\log t)^{1/2)}$-colorable. Recently, Norin, Song and I showed that every graph with no $K_t$ minor is $O(t(\log t)^\beta)$-colorable for every $\beta > 1/4$, making the first improvement on the order of magnitude of the $O(t(\log t)^{1/2})$ bound. Here we show that every graph with no $K_t$ minor is $O(t (\log t)^\beta)$-colorable for every $\beta > 0$; more specifically, they are $O(t (\log \log t)^6)$-colorable.
Further Information:
This seminar will be held via zoom. Meeting link will be sent to members of our mailing list (https://lists.maths.ox.ac.uk/mailman/listinfo/random-matrix-theory-anno…) in our weekly announcement on Monday.
We analyse the eigenvectors of the adjacency matrix of a critical Erdös-Rényi graph G(N,d/N), where d is of order \log N. We show that its spectrum splits into two phases: a delocalized phase in the middle of the spectrum, where the eigenvectors are completely delocalized, and a semilocalized phase near the edges of the spectrum, where the eigenvectors are essentially localized on a small number of vertices. In the semilocalized phase the mass of an eigenvector is concentrated in a small number of disjoint balls centred around resonant vertices, in each of which it is a radial exponentially decaying function. The transition between the phases is sharp and is manifested in a discontinuity in the localization exponents of the eigenvectors. Joint work with Johannes Alt and Raphael Ducatez.
The nilpotent orbits of a Lie algebra play a central role in modern representation theory notably cropping up in the Springer correspondence and the fundamental lemma. Their behaviour when the base field is algebraically closed is well understood, however the p-adic case which arises in the study of admissible representations of p-adic groups is considerably more subtle. Their classification was only settled in the late 90s when Barbasch and Moy ('97) and Debacker (’02) developed an ‘affine Bala-Carter’ theory using the Bruhat-Tits building. In this talk we combine this work with work by Sommers and McNinch to provide a parameterisation of nilpotent orbits over a maximal unramified extension of a p-adic field in terms of so called dual Springer parameters and outline an application of this result to wavefront sets.
We develop random graph models where graphs are generated by connecting not only pairs of vertices by edges but also larger subsets of vertices by copies of small atomic subgraphs of arbitrary topology. This allows the for the generation of graphs with extensive numbers of triangles and other network motifs commonly observed in many real world networks. More specifically we focus on maximum entropy ensembles under constraints placed on the counts and distributions of atomic subgraphs and derive general expressions for the entropy of such models. We also present a procedure for combining distributions of multiple atomic subgraphs that enables the construction of models with fewer parameters. Expanding the model to include atoms with edge and vertex labels we obtain a general class of models that can be parametrized in terms of basic building blocks and their distributions that includes many widely used models as special cases. These models include random graphs with arbitrary distributions of subgraphs, random hypergraphs, bipartite models, stochastic block models, models of multilayer networks and their degree corrected and directed versions. We show that the entropy for all these models can be derived from a single expression that is characterized by the symmetry groups of atomic subgraphs.
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
We will be interested in the structure of random typical minimal factorizations of the n-cycle into transpositions, which are factorizations of $(1,\ldots,n)$ as a product of $n-1$ transpositions. We shall establish a phase transition when a certain amount of transpositions have been read one after the other. One of the main tools is a limit theorem for two-type Bienaymé-Galton-Watson trees conditioned on having given numbers of vertices of both types, which is of independent interest. This is joint work with Valentin Féray.
I discuss a ``running vacuum cosmological model'' of a string-inspired
Universe, in which gravitational anomalies play an important role, in
inducing, through condensates of primordial gravitational waves, an early de
Sitter inflationary phase, during which constant (in cosmic time)
backgrounds of the antisymmetric (Kalb-Ramond (KR)) tensor field of the
massless bosonic string multiplet remain undiluted until the exit from
inflation and well into the subsequent radiation era. During the radiation
phase, such backgrounds, which violate spontaneously Lorentz and CPT
symmetry, induce lepton asymmetry (Leptogenesis) in models involving
right-handed neutrinos. Chiral matter is generated in the model at the exit
phase of inflation, and this leads to the cancellation of gravitational
anomalies in the post inflationary universe. During the radiation era, non
perturbative effects can also be held responsible for the generation of a
potential for the gravitational axion, associated in (3+1)-dimensions with
the field strength of the KR field, which can thus play the role of a Dark
Matter component. In the talk, I discuss the underlying formalism and argue
in favour of the consistency of a theory with gravitational anomalies in the
early Universe. I connect the energy density of such a universe with that of
the so called ``running-vacuum model'' in which the vacuum energy density is
expressed in terms of even powers of the Hubble parameter, which in general
depends on cosmic time. The gravitational-wave condensate induces a term in
the energy density proportional to the fourth-power of the Hubble parameter
H^4 , which is responsible for the early de Sitter phase, during which the
Hubble parameter is approximately a constant. I also discuss briefly a
connection of this string inspired model with the Swampland and weak gravity
conjectures and explain how consistency with such conjectures is achieved,
despite the fact that the model is compatible with slow-roll inflationary
phenomenology.
In 1983, Faltings proved Mordell's conjecture on the finiteness of $K$-points on curves of genus >1 defined over a number field $K$ by proving the finiteness of isomorphism classes of isogenous abelian varieties over $K$. The "first" major step from Mordell's conjecture to what Faltings did came 15 years earlier when Parshin showed that a certain conjecture of Shafarevich would imply Mordell's conjecture. In this talk, I'll focus on motivating and sketching Parshin's argument in an accessible manner and provide some heuristics on how to get from Faltings' finiteness statement to the Shafarevich conjecture.
Unlike the classical Cauchy problem in general relativity, which has been well-understood since the pioneering work of Y. Choquet-Bruhat (1952), the initial boundary value problem for the Einstein equations still lacks a comprehensive treatment. In particular, there is no geometric description of the boundary data yet known, which makes the problem well-posed for general timelike boundaries. Various gauge-dependent results have been established. Timelike boundaries naturally arise in the study of massive bodies, numerics, AdS spacetimes. I will give an overview of the problem and then present recent joint work with Jacques Smulevici that treates the special case of a totally geodesic boundary.
Trading of financial instruments has largely moved away from floor trading and onto electronic exchanges. Orders to buy and sell are queued at these exchanges in a limit-order book. While a full analysis of the dynamics of a limit-order book requires an understanding of strategic play among multiple agents, and is thus extremely complex, so-called zero-intelligence Poisson models have been shown to capture many of the statistical features of limit-order book evolution. These models can be addressed by traditional queueing theory techniques, including Laplace transform analysis. In this work, we demonstrate in a simple setting that another queueing theory technique, approximating the Poisson model by a diffusion model identified as the limit of a sequence of scaled Poisson models, can also be implemented. We identify the diffusion limit, find an embedded semi-Markov model in the limit, and determine the statistics of the embedded semi-Markov model. Along the way, we introduce and study a new type of process, a generalization of skew Brownian motion that we call two-speed Brownian motion.
I will discuss recent progress on the study of homological duality properties of complex algebraic manifolds, with a view towards the projective Singer-Hopf conjecture. (Joint work with Y. Liu and B. Wang.)
A vast class of 4d SCFTs can be engineered by wrapping a stack of M5-branes on a Riemann surface. These SCFTs can exhibit a variety of global symmetries, continuous or discrete, including both ordinary (0-form) symmetries, as well as generalized (higher-form) symmetries. In this talk, I will focus on discrete and higher-form symmetries in setups with M5-branes on a smooth Riemann surface. Adopting a holographic point of view, a crucial role is played by topological mass terms in 5d supergravity (similar to BF terms in four dimensions). I will discuss how the global symmetries of the boundary 4d theory are inferred from the 5d topological terms, and how one can compute 4d ‘t Hooft anomalies involving discrete and/or higher-form symmetries.
Martin Gallauer (North): "Algebraic algebraic geometry"
If a space is described by algebraic equations, its algebraic invariants are endowed with additional structure. I will illustrate this with some simple examples, and speculate on the meaning of the title of my talk.
Zhaohe Dai (South): "Two-dimensional material bubbles"
Two-dimensional (2D) materials are a relatively new class of thin sheets consisting of a single layer of covalently bonded atoms and have shown a host of unique electronic properties. In 2D material electronic devices, however, bubbles often form spontaneously due to the trapping of air or ambient contaminants (such as water molecules and hydrocarbons) at sheet-substrate interfaces. Though they have been considered to be a nuisance, I will discuss that bubbles can be used to characterize 2D materials' bending rigidity after the pressure inside being well controlled. I will then focus on bubbles of relatively large deformations so that the elastic tension could drive the radial slippage of the sheet on its substrate. Finally, I will discuss that the consideration of such slippage is vital to characterize the sheet's stretching stiffness and gives new opportunities to understand the adhesive and frictional interactions between the sheet and various substrates that it contacts.
Motivated by string dualities we propose topological gravity as the early phase of our universe. The topological nature of this phase naturally leads to the explanation of many of the puzzles of early universe cosmology. A concrete realization of this scenario using Witten's four dimensional topological gravity is considered. This model leads to the power spectrum of CMB fluctuations which is controlled by the conformal anomaly coefficients $a,c$. In particular the strength of the fluctuation is controlled by $1/a$ and its tilt by $c g^2$ where $g$ is the coupling constant of topological gravity. The positivity of $c$, a consequence of unitarity, leads automatically to an IR tilt for the power spectrum. In contrast with standard inflationary models, this scenario predicts $\mathcal{O}(1)$ non-Gaussianities for four- and higher-point correlators and the absence of tensor modes in the CMB fluctuations.
In this talk I will present an efficient algorithm to produce a provably dense sample of a smooth compact algebraic variety. The procedure is partly based on computing bottlenecks of the variety. Using geometric information such as the bottlenecks and the local reach we also provide bounds on the density of the sample needed in order to guarantee that the homology of the variety can be recovered from the sample.
Snow densification and meltwater refreezing store water in alpine regions and transform snow into ice on the surface of glaciers. Despite their importance in determining snow-water equivalent and glacier-induced sea level rise, we still lack a complete understanding of the physical mechanisms underlying snow compaction and the infiltration of meltwater into snowpacks. Here we (i) analyze snow compaction experiments as a promising direction for determining the rheology of snow though its many stages of densification and (ii) solve for the motion of refreezing fronts and for the temperature increase due to the release of latent heat, which we compare to temperature observations from the Greenland Ice Sheet (Humphrey et al., 2012). In the first part, we derive a mixture theory for compaction and air flow through the porous snow (cf. Hewitt et al. 2016) to compare against laboratory data (Wang and Baker, 2013). We find that a plastic compaction law explains experimental results. Taking standard forms for the permeability and effective pressure as functions of the porosity, we show that this compaction mode persists for a range of densities and overburden loads (Meyer et al., 2020). We motivate the second part of the talk by the observed melting at high elevations on the Greenland Ice Sheet, which causes the refreezing layers that are observed in ice cores. Our analysis shows that as surface temperatures increase, the capacity for meltwater storage in snow decreases and surface runoff increases leading to sea level rise (Meyer and Hewitt, 2017). Together these studies provide a holistic picture for how snow changes through compaction and the role of meltwater percolation in altering the temperature and density structure of surface snow.
What should you expect in intercollegiate classes? What can you do to get the most out of them? In this session, experienced class tutors will share their thoughts, including advice about hybrid and online classes.
All undergraduate and masters students welcome, especially Part B and MSc students attending intercollegiate classes. (Students who attended the Part C/OMMS induction event will find significant overlap between the advice offered there and this session!)
Multi-modal data sets are growing rapidly in single cell genomics, as well as other fields in science and engineering. We introduce MultiMAP, an approach for dimensionality reduction and integration of multiple datasets. MultiMAP embeds multiple datasets into a shared space so as to preserve both the manifold structure of each dataset independently, in addition to the manifold structure in shared feature spaces. MultiMAP is based on the rich mathematical foundation of UMAP, generalizing it to the setting of more than one data manifold. MultiMAP can be used for visualization of multiple datasets as well as an integration approach that enables subsequent joint analyses. Compared to other integration for single cell data, MultiMAP is not restricted to a linear transformation, is extremely fast, and is able to leverage features that may not be present in all datasets. We apply MultiMAP to the integration of a variety of single-cell transcriptomics, chromatin accessibility, methylation, and spatial data, and show that it outperforms current approaches in run time, label transfer, and label consistency. On a newly generated single cell ATAC-seq and RNA-seq dataset of the human thymus, we use MultiMAP to integrate cells across pseudotime. This enables the study of chromatin accessibility and TF binding over the course of T cell differentiation.
Part of UK virtual operator algebras seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home
Wieler has shown that every irreducible Smale space with totally disconnected stable sets is a solenoid (i.e., obtained via a stationary inverse limit construction). Through examples I will discuss how this allows one to compute the K-theory of the stable algebra, S, and the stable Ruelle algebra, S\rtimes Z. These computations involve writing S as a stationary inductive limit and S\rtimes Z as a Cuntz-Pimsner algebra. These constructions reemphasize the view point that Smale space C*-algebras are higher dimensional generalizations of Cuntz-Krieger algebras. The main results are joint work with Magnus Goffeng and Allan Yashinski.
We show how traders use immediate execution limit orders (IELOs) to liquidate a position when the time between a trade attempt and the outcome of the attempt is random, i.e., there is latency in the marketplace and latency is random. We frame our model as a delayed impulse control problem in which the trader controls the times and the price limit of the IELOs she sends to the exchange. The contribution of the paper is twofold: (i) Our paper is the first to study an optimal liquidation problem that accounts for random delays, price impact, and transaction costs. (ii) We introduce a new type of impulse control problem with stochastic delay, not previously studied in the literature. We characterise the value functions as the solution to a coupled system of a Hamilton-Jacobi-Bellman quasi-variational inequality (HJBQVI) and a partial differential equation. We use a Feynman-Kac type representation to reduce the system of coupled value functions to a non-standard HJBQVI, and we prove existence and uniqueness of this HJBQVI in a viscosity sense. Finally, we implement the latency-optimal strategy and compare it with three benchmarks: (i) optimal execution with deterministic latency, (ii) optimal execution with zero latency, (iii) time-weighted average price strategy. We show that when trading in the EUR/USD currency pair, the latency-optimal strategy outperforms the benchmarks between ten USD per million EUR traded and ninety USD per million EUR traded.
We return this term to our usual flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics.
There are many examples of thin-film flows in fluid dynamics, and in many cases similarity solutions are possible. In the typical, well-known case the thin-film shape is described by a nonlinear partial differential equation in two independent variables (say x and t), which upon recognition of a similarity variable, reduces the problem to a nonlinear ODE. In this talk I describe work we have done on 1) Marangoni-driven spreading on pre-wetted films, where the thickness of the pre-wetted film affects the dynamics, and 2) the drainage of a film on a vertical substrate of finite width. In the latter case we find experimentally a structure to the film shape near the edge, which is a function of time and two space variables. Analysis of the corresponding thin-film equation shows that there is a similarity solution, collapsing three independent variables to one similarity variable, so that the PDE becomes an ODE. The solution is in excellent agreement with the experimental measurements.
Part of UK virtual operator algebras seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home
We have various ways of describing the extent to which two countably infinite groups are "the same." Are they isomorphic? If not, are they commensurable? Measure equivalent? Quasi-isometric? Orbit equivalent? W*-equivalent? Von Neumann equivalent? In this expository talk, we will define these notions of equivalence, discuss the known relationships between them, and work out some examples. Along the way, we will describe recent joint work with Ishan Ishan and Jesse Peterson.
datasig.ox.ac.uk/events
Any binary classifier (or score-function) can be used to define a dissimilarity between two distributions of points with positive and negative labels. Actually, many well-known distribution-dissimilarities are classifier-based dissimilarities: the total variation, the KL- or JS-divergence, the Hellinger distance, etc. And many recent popular generative modelling algorithms compute or approximate these distribution-dissimilarities by explicitly training a classifier: eg GANs and their variants. After a brief introduction to these classifier-based dissimilarities, I will focus on the influence of the classifier's capacity. I will start with some theoretical considerations illustrated on maximum mean discrepancies --a weak form of total variation that has grown popular in machine learning-- and then focus on deep feed-forward networks and their vulnerability to adversarial examples. We will see that this vulnerability is already rooted in the design and capacity of our current networks, and will discuss ideas to tackle this vulnerability in future.
In this talk, we introduce a new preconditioner for the large, structured systems appearing in implicit Runge–Kutta time integration of parabolic partial differential equations. This preconditioner is based on a block LDU factorization with algebraic multigrid subsolves for scalability.
We compare our preconditioner in condition number and eigenvalue distribution, and through numerical experiments, with others in the literature. In experiments run with implicit Runge–Kutta stages up to s = 7, we find that the new preconditioner outperforms the others, with the improvement becoming more pronounced as the spatial discretization is refined and as temporal order is increased.
A link for this talk will be sent to our mailing list a day or two in advance. If you are not on the list and wish to be sent a link, please send email to @email.
I will present a nonlinear version of the open mapping principle which applies to constant-coefficient PDEs which are both homogeneous and weak* stable. An example of such a PDE is the Jacobian equation. I will discuss the consequences of such a result for the Jacobian and its relevance towards an answer to a long-standing problem due to Coifman, Lions, Meyer and Semmes. This is based on joint work with Lukas Koch and Sauli Lindberg.
/
I present a general nonlinear open mapping principle suited to applications to scale-invariant PDEs in regularity regimes where the equations are stable under weak* convergence. As an application I show that, for any $p < \infty$, the set of initial data for which there are dissipative weak solutions in $L^p_t L^2_x$ is meagre in the space of solenoidal L^2 fields. This is based on joint work with A. Guerra (Oxford) and S. Lindberg (Aalto).
The Zilber-Pink conjecture predicts how large the intersection of a d-dimensional subvariety of an abelian variety/algebraic torus/Shimura variety/... with the union of special subvarieties of codimension > d can be (where the definition of "special" depends on the setting). In joint work with Fabrizio Barroero, we have reduced this conjecture for complex abelian varieties to the same conjecture for abelian varieties defined over the algebraic numbers. In work in progress, we introduce the notion of a distinguished category, which contains both connected commutative algebraic groups and connected mixed Shimura varieties. In any distinguished category, special subvarieties can be defined and a Zilber-Pink statement can be formulated. We show that any distinguished category satisfies the defect condition, introduced as a useful technical tool by Habegger and Pila. Under an additional assumption, which makes the category "very distinguished", we show furthermore that the Zilber-Pink statement in general follows from the case where the subvariety is defined over the algebraic closure of the field of definition of the distinguished variety. The proof closely follows our proof in the case of abelian varieties and leads also to unconditional results in the moduli space of principally polarized abelian surfaces as well as in fibered powers of the Legendre family of elliptic curves.