Tue, 03 Mar 2020

12:00 - 13:00
C1

Dynamic approaches to measure heterogeneity in spatial networks

Vincenzo Nicosia
(Queen Mary University)
Abstract

Spatial networks are often the most natural way to represent spatial information of different kinds. One of the outstanding problems in current spatial network research is to effectively quantify the heterogeneity of the discrete-valued spatial distributions underlying a spatial graph. In this talk we will presentsome recent alternative approaches to estimate heterogeneity in spatial networks based on simple dynamical processes running on them.

Mon, 02 Mar 2020
16:00
L4

Improved convergence of low entropy Allen-Cahn flows to mean curvature flow and curvature estimates

Shengwen Wang
(Queen Mary University London)
Abstract

The parabolic Allen-Cahn equations is the gradient flow of phase transition energy and can be viewed as a diffused version of mean curvature flows of hypersurfaces. It has been known by the works of Ilmanen and Tonegawa that the energy densities of the Allen-Cahn flows converges to mean curvature flows in the sense of varifold and the limit varifold is integer rectifiable. It is not known in general whether the transition layers have higher regularity of convergence yet. In this talk, I will report on a joint work with Huy Nguyen that under the low entropy condition, the convergence of transition layers can be upgraded to C^{2,\alpha} sense. This is motivated by the work of Wang-Wei and Chodosh-Mantoulidis in elliptic case that under the condition of stability, one can upgrade the regularity of convergence.

Mon, 02 Mar 2020

16:00 - 17:00

Problems on compatible systems of Galois representations

Federico Amadio
Abstract

We will discuss some problems around independence of l in compatible systems of Galois representations, mostly focusing on the independence of l of algebraic monodromy groups. We will explain how these problems fit into the context of the Langlands program, and present results both in characteristic zero and in positive characteristic settings.

Mon, 02 Mar 2020
15:45
L6

Obstructing isotopies between surfaces in four manifolds

Hannah Schwartz
(Max Planck Institute Bonn)
Abstract

We will first construct pairs of homotopic 2-spheres smoothly embedded in a 4-manifold that are smoothly equivalent (via an ambient diffeomorphism preserving homology) but not even topologically isotopic. Indeed, these examples show that Gabai's recent "4D Lightbulb Theorem" does not hold without the 2-torsion hypothesis. We will proceed to discuss two distinct ways of obstructing such an isotopy, as well as related invariants which can be used to obstruct an isotopy between pairs of properly embedded disks (rather than spheres) in a 4-manifold.

Mon, 02 Mar 2020

15:45 - 16:45
L3

Mean-field Langevin dynamics and neural networks

ZHENJIE REN
(Université Paris Dauphine)
Abstract

The deep neural network has achieved impressive results in various applications, and is involved in more and more branches of science. However, there are still few theories supporting its empirical success. In particular, we miss the mathematical tool to explain the advantage of certain structures of the network, and to have quantitive error bounds. In our recent work, we used a regularised relaxed control problem to model the deep neural network.  We managed to characterise its optimal control by the invariant measure of a mean-field Langevin system, which can be approximated by the marginal laws. Through this study we understand the importance of the pooling for the deep nets, and are capable of computing an exponential convergence rate for the (stochastic) gradient descent algorithm.

Mon, 02 Mar 2020

14:15 - 15:15
L4

Cohomogeneity one families in Spin(7)-geometry

Fabian Lehmann
(UCL)
Abstract

An 8-dimensional Riemannian manifold with holonomy group contained in Spin(7) is Ricci-flat, but not Kahler. The condition that the holonomy reduces to Spin(7) is equivalent to a complicated system of non-linear PDEs. In the non-compact setting, symmetries can be used to reduce this complexity. In the case of cohomogeneity one manifolds, i.e. where a generic orbit has codimension one, the non-linear PDE system
reduces to a nonlinear ODE system. I will discuss recent progress in the construction of 1-parameter families of complete cohomogeneity one Spin(7) holonomy metrics. All examples are asymptotically conical (AC) or asymptotically locally conical (ALC).

 

Mon, 02 Mar 2020

14:15 - 15:15
L3

Empirical Measure and Small Noise Asymptotics under Large Deviation Scaling for Interacting Diffusions

AMARJIT BUDHIRAJA
(University of North Carolina)
Abstract

Consider a collection of particles whose state evolution is described through a system of interacting diffusions in which each particle
is driven by an independent individual source of noise and also by a small amount of noise that is common to all particles. The interaction between the particles is due to the common noise and also through the drift and diffusion coefficients that depend on the state empirical measure. We study large deviation behavior of the empirical measure process which is governed by two types of scaling, one corresponding to mean field asymptotics and the other to the Freidlin-Wentzell small noise asymptotics. 
Different levels of intensity of the small common noise lead to different types of large deviation behavior, and we provide a precise characterization of the various regimes. We also study large deviation behavior of  interacting particle systems approximating various types of Feynman-Kac functionals. Proofs are based on stochastic control representations for exponential functionals of Brownian motions and on uniqueness results for weak solutions of stochastic differential equations associated with controlled nonlinear Markov processes. 

Mon, 02 Mar 2020
12:45

Aspects of gauge-strings duality

Carlos Nunez
(Swansea)
Abstract

I will discuss recently published examples of SCFTs in
two dimensions and their dual backgrounds. Aspects of the
integrability of these string backgrounds will be described in
correspondence with those of the dual SCFTs. The comparison with four and
six dimensional examples will be presented. It time allows, the case of
conformal quantum mechanics will also be addressed.

Fri, 28 Feb 2020

16:00 - 17:00
L2

North Meets South

Elena Gal and Carolina Urzua-Torres
Abstract

Elena Gal
Categorification, Quantum groups and TQFTs

Quantum groups are mathematical objects that encode (via their "category of representations”) certain symmetries which have been found in the last several dozens of years to be connected to several areas of mathematics and physics. One famous application uses representation theory of quantum groups to construct invariants of 3-dimensional manifolds. To extend this theory to higher dimensions we need to “categorify" quantum groups - in essence to find a richer structure of symmetries. I will explain how one can approach such problem.

 

Carolina Urzua-Torres
Why you should not do boundary element methods, so I can have all the fun.

Boundary integral equations offer an attractive alternative to solve a wide range of physical phenomena, like scattering problems in unbounded domains. In this talk I will give a simple introduction to boundary integral equations arising from PDEs, and their discretization via Galerkin BEM. I will discuss some nice mathematical features of BEM, together with their computational pros and cons. I will illustrate these points with some applications and recent research developments.
 

Fri, 28 Feb 2020

14:00 - 15:00
L3

Diffusion tensor cardiac magnetic resonance imaging to measure myocardial disarray in patients with hypertrophic cardiomyopathy

Dr Rina Ariga
(Radcliffe Department of Medicine University of Oxford)
Abstract

Sudden cardiac death is the most feared complication of Hypertrophic Cardiomyopathy. This inherited heart muscle disease affects 1 in 500 people. But we are poor at identifying those who really need a potentially life-saving implantable cardioverter-defibrillator. Measuring the abnormalities believed to trigger fatal ventricular arrhythmias could guide treatment. Myocardial disarray is the hallmark feature of patients who die suddenly but is currently a post mortem finding. Through recent advances, the microstructure of the myocardium can now be examined by mapping the preferential diffusion of water molecules along fibres using Diffusion Tensor Cardiac Magnetic Resonance imaging. Fractional anisotropy calculated from the diffusion tensor, quantifies the directionality of diffusion.  Here, we show that fractional anisotropy demonstrates normal myocardial architecture and provides a novel imaging biomarker of the underlying substrate in hypertrophic cardiomyopathy which relates to ventricular arrhythmia.

 

Fri, 28 Feb 2020

14:00 - 15:00
L6

TBA

Fri, 28 Feb 2020

11:45 - 13:15
L3

InFoMM CDT Group Meeting

Oliver Bond, Ana Osojnik, Scott Marquis, John Fitzgerald
(Mathematical Institute)
Fri, 28 Feb 2020

10:00 - 11:00
L3

Compressed Sensing or common sense?

Christopher Townsend
(Leonardo)
Abstract

We present a simple algorithm that successfully re-constructs a sine wave, sampled vastly below the Nyquist rate, but with sampling time intervals having small random perturbations. We show how the fact that it works is just common sense, but then go on to discuss how the procedure relates to Compressed Sensing. It is not exactly Compressed Sensing as traditionally stated because the sampling transformation is not linear.  Some published results do exist that cover non-linear sampling transformations, but we would like a better understanding as to what extent the relevant CS properties (of reconstruction up to probability) are known in certain relatively simple but non-linear cases that could be relevant to industrial applications.

Thu, 27 Feb 2020

17:00 - 18:30
L1

Hidden histories: Oxford’s female computing pioneers

Ursula Martin, Georgina Ferry and Panel
(University of Oxford)
Further Information

Join us in Oxford Mathematics on 27th February 2020 for a talk and discussion celebrating the Bodleian Libraries' release of interviews by Georgina Ferry of some of Oxford’s female computing pioneers.

Some remarkable women shaped Oxford computing: Dorothy Hodgkin won the Nobel Prize for work on insulin; Susan Hockey pioneered digital humanities; Shirley Carter, Linda Hayes and Joan Walsh got the pioneering software company NAG off the ground in 1970; and female operators and programmers were at the heart of the early large-scale computing efforts powering 20th-century science.

4.30pm: Welcome tea
5.00pm: Professor June Barrow-Green - Hidden histories: Oxford’s female computing pioneers
5.45pm: Panel discussion chaired by science writer Georgina Ferry and featuring some of the the pioneers themselves

No need to register.

Thu, 27 Feb 2020
16:00
L6

Apéry series and Mellin transforms of solutions of differential equations

Spencer Bloch
(University of Chicago)
Abstract


One can study periods of algebraic varieties by a process of "fibering out" in which the variety is fibred over a punctured curve $f:X->U$. I will explain this process and how it leads to the classical Picard Fuchs (or Gauss-Manin) differential equations. Periods are computed by integrating solutions of Picard Fuchs over suitable closed paths on $U$. One can also couple (i.e.tensor) the Picard Fuchs connection to given connections on $U$. For example, $t^s$ with $t$ a unit on $U$ and $s$ a parameter is a solution of the connection on $\mathscr{O}_U$ given by $\nabla(1) = sdt/t$. Our "periods" become integrals over suitable closed chains on $U$ of $f(t)t^sdt/t$. Golyshev called the resulting functions of $s$ "motivic Gamma functions". 
Golyshev and Zagier studied certain special Picard Fuchs equations for their proof of the Gamma conjecture in mirror symmetry in the case of Picard rank 1. They write down a generating series, the Apéry series, the knowledge of the first few terms of which implied the gamma conjecture. We show their Apéry series is the Taylor series of a product of the motivic Gamma function times an elementary function of $s$. In particular, the coefficients of the Apéry series are periods up to inverting $2\pi i$. We relate these periods to periods of the limiting mixed Hodge structure at a point of maximal unipotent monodromy. This is joint work with M. Vlasenko. 
 

Thu, 27 Feb 2020

16:00 - 17:00
L4

Deep Reinforcement Learning for Trading

Zihao Zhang
(Oxford University Engineering)
Abstract


We adopt Deep Reinforcement Learning algorithms to design trading strategies for continuous futures contracts. Both discrete and continuous action spaces are considered and volatility scaling is incorporated to create reward functions which scale trade positions based on market volatility. We test our algorithms on the 50 most liquid futures contracts from 2011 to 2019, and investigate how performance varies across different asset classes including commodities, equity indices, fixed income and FX markets. We compare our algorithms against classical time series momentum strategies, and show that our method outperforms such baseline models, delivering positive profits despite heavy transaction costs. The experiments show that the proposed algorithms can follow large market trends without changing positions and can also scale down, or hold, through consolidation periods.
The full-length text is available at https://arxiv.org/abs/1911.10107.
 

Thu, 27 Feb 2020

14:00 - 15:00
L4

Randomised algorithms for solving systems of linear equations

Gunnar Martinsson
(University of Texas at Austin)
Abstract

The task of solving large scale linear algebraic problems such as factorising matrices or solving linear systems is of central importance in many areas of scientific computing, as well as in data analysis and computational statistics. The talk will describe how randomisation can be used to design algorithms that in many environments have both better asymptotic complexities and better practical speed than standard deterministic methods.

The talk will in particular focus on randomised algorithms for solving large systems of linear equations. Both direct solution techniques based on fast factorisations of the coefficient matrix, and techniques based on randomised preconditioners, will be covered.

Note: There is a related talk in the Random Matrix Seminar on Tuesday Feb 25, at 15:30 in L4. That talk describes randomised methods for computing low rank approximations to matrices. The two talks are independent, but the Tuesday one introduces some of the analytical framework that supports the methods described here.

Thu, 27 Feb 2020
13:00
N3.12

Sustainable networks

Leonie Neuhäuser
(Hertie School)
Abstract

Sustainability is a highly complex topic, containing interwoven economic, ecological, and social aspects.  Simply defining the concept of sustainability is a challenge in itself.  Assessing the impact of sustainability efforts and generating effective policy requires analyzing the interactions and challenges presented by these different aspects. To address this challenge, it is necessary to develop methods that bridge fields and take into account phenomena that range from physical analysis of climate to network analysis of societal phenomena. In this talk, I will give an insight into areas of mathematical research that try to account for these inter-dependencies. The aim of this talk is to provide a critical discussion of the challenges in a joint discussion and emphasize the importance of multi-disciplinary approaches.

Thu, 27 Feb 2020
12:00
L4

New solutions to the stationary and dissipative Ginzburg-Landau model

Juan Davila
(University of Bath)
Abstract

I will describe new solutions to the stationary Ginzburg-Landau equation in 3 dimensions with vortex lines given by interacting helices, with degree one around each filament and total degree an arbitrary positive integer. I will also present results on the asymptotic behavior of vortices in the entire plane for a dissipative Ginzburg-Landau equation. This is work in collaboration with Manuel del Pino, Remy Rodiac, Maria Medina, Monica Musso and Juncheng Wei.

Thu, 27 Feb 2020
11:30
C4

Non-archimedean parametrizations and some bialgebraicity results

François Loeser
(Sorbonne Université)
Abstract

We will provide a general overview on some recent work on non-archimedean parametrizations and their applications. We will start by presenting our work with Cluckers and Comte on the existence of good Yomdin-Gromov parametrizations in the non-archimedean context and a $p$-adic Pila-Wilkie theorem.   We will then explain how this is used in our work with Chambert-Loir to prove bialgebraicity results in products of Mumford curves. 
 

Tue, 25 Feb 2020

16:00 - 17:00
C1

Functional calculus for analytic Besov functions

Charles Batty
(Oxford)
Abstract

There is a class $\mathcal{B}$ of analytic Besov functions on a half-plane, with a very simple description.   This talk will describe a bounded functional calculus $f \in \mathcal{B} \mapsto f(A)$ where $-A$ is the generator of either a bounded $C_0$-semigroup on Hilbert space or a bounded analytic semigroup on a Banach space.    This calculus captures many known results for such operators in a unified way, and sometimes improves them.   A discrete version of the functional calculus was shown by Peller in 1983.

Tue, 25 Feb 2020

15:30 - 16:30
L6

Randomised algorithms for computing low rank approximations of matrices

Per-Gunnar Martinsson
(U.T. Austin)
Abstract

The talk will describe how ideas from random matrix theory can be leveraged to effectively, accurately, and reliably solve important problems that arise in data analytics and large scale matrix computations. We will focus in particular on accelerated techniques for computing low rank approximations to matrices. These techniques rely on randomised embeddings that reduce the effective dimensionality of intermediate steps in the computation. The resulting algorithms are particularly well suited for processing very large data sets.

The algorithms described are supported by rigorous analysis that depends on probabilistic bounds on the singular values of rectangular Gaussian matrices. The talk will briefly review some representative results.

Note: There is a related talk in the Computational Mathematics and Applications seminar on Thursday Feb 27, at 14:00 in L4. There, the ideas introduced in this talk will be extended to the problem of solving large systems of linear equations.

Tue, 25 Feb 2020
14:30
L2

Low-rank plus sparse matrices: ill-posedness and guaranteed recovery

Simon Vary
(Oxford)
Abstract

Robust principal component analysis and low-rank matrix completion are extensions of PCA that allow for outliers and missing entries, respectively. Solving these problems requires a low coherence between the low-rank matrix and the canonical basis. However, in both problems the well-posedness issue is even more fundamental; in some cases, both Robust PCA and matrix completion can fail to have any solutions due to the fact that the set of low-rank plus sparse matrices is not closed. Another consequence of this fact is that the lower restricted isometry property (RIP) bound cannot be satisfied for some low-rank plus sparse matrices unless further restrictions are imposed on the constituents. By restricting the energy of one of the components, we close the set and are able to derive the RIP over the set of low rank plus sparse matrices and operators satisfying concentration of measure inequalities. We show that the RIP of an operator implies exact recovery of a low-rank plus sparse matrix is possible with computationally tractable algorithms such as convex relaxations or line-search methods. We propose two efficient iterative methods called Normalized Iterative Hard Thresholding (NIHT) and Normalized Alternative Hard Thresholding (NAHT) that provably recover a low-rank plus sparse matrix from subsampled measurements taken by an operator satisfying the RIP.
 

Tue, 25 Feb 2020
14:15
L4

A gallery model for affine flag varieties

Yusra Naqvi
(University of Sidney)
Abstract

Positively folded galleries arise as images of retractions of buildings onto a fixed apartment and play a role in many areas of maths (such as in the study of affine Hecke algebras, Macdonald polynomials, MV-polytopes, and affine Deligne-Lusztig varieties). In this talk, we will define positively folded galleries, and then look at how these can be used to study affine flag varieties. We will also look at a new recursive description of the set of end alcoves of folded galleries with respect to alcove-induced orientations, which gives us a combinatorial description of certain double coset intersections in these affine flag varieties. This talk is based on joint work with Elizabeth Milićević, Petra Schwer and Anne Thomas.

Tue, 25 Feb 2020
14:00
L6

Coordinate Deletion

Eero Räty
(Cambridge)
Abstract

For a family $A$ in $\{0,...,k\}^n$, its deletion shadow is the set obtained from $A$ by deleting from any of its vectors one coordinate. Given the size of $A$, how should we choose $A$ to minimise its deletion shadow? And what happens if instead we may delete only a coordinate that is zero? We discuss these problems, and give an exact solution to the second problem.

Tue, 25 Feb 2020
14:00
L2

Fast and stable randomized low-rank matrix approximation

Yuji Nakatsukasa
(Oxford)
Abstract

Randomized SVD has become an extremely successful approach for efficiently computing a low-rank approximation of matrices. In particular the paper by Halko, Martinsson (who is speaking twice this week), and Tropp (SIREV 2011) contains extensive analysis, and made it a very popular method. 
The complexity for $m\times n$ matrices is $O(Nr+(m+n)r^2)$ where $N$ is the cost of a (fast) matrix-vector multiplication; which becomes $O(mn\log n+(m+n)r^2)$ for dense matrices. This work uses classical results in numerical linear algebra to reduce the computational cost to $O(Nr)$ without sacrificing numerical stability. The cost is essentially optimal for many classes of matrices, including $O(mn\log n)$ for dense matrices. The method can also be adapted for updating, downdating and perturbing the matrix, and is especially efficient relative to previous algorithms for such purposes.  

 

Tue, 25 Feb 2020

12:45 - 14:00
C3

Automated quantitative myocardial perfusion MRI

Cian Scannell
(Kings College, London)
Abstract

Stress perfusion cardiac magnetic resonance (CMR) imaging has been shown to be highly accurate for the detection of coronary artery disease. However, a major limitation is that the accuracy of the visual assessment of the images is challenging and thus the accuracy of the diagnosis is highly dependent on the training and experience of the reader. Quantitative perfusion CMR, where myocardial blood flow values are inferred directly from the MR images, is an automated and user-independent alternative to the visual assessment.

This talk will focus on addressing the main technical challenges which have hampered the adoption of quantitative myocardial perfusion MRI in clinical practice. The talk will cover the problem of respiratory motion in the images and the use of dimension reduction techniques, such as robust principal component analysis, to mitigate this problem. I will then discuss our deep learning-based image processing pipeline that solves the necessary series of computer vision tasks required for the blood flow modelling and introduce the Bayesian inference framework in which the kinetic parameter values are inferred from the imaging data.

Tue, 25 Feb 2020
12:00
L4

Uniqueness & non-uniqueness results for wave equations

Jan Sbierski
(Oxford)
Abstract

A well-known theorem of Choquet-Bruhat and Geroch states that for given smooth initial data for the Einstein equations there exists a unique maximal globally hyperbolic development. In particular, time evolution of globally hyperbolic solutions is unique. This talk investigates whether the same result holds for quasilinear wave equations defined on a fixed background. After recalling the notion of global hyperbolicity, we first present an example of a quasilinear wave equation for which unique time evolution in fact fails and contrast this with the Einstein equations. We then proceed by presenting conditions on quasilinear wave equations which ensure uniqueness. This talk is based on joint work with Harvey Reall and Felicity Eperon.
 

Tue, 25 Feb 2020

12:00 - 13:00
C1

A framework for constructing generative models of mesoscale structure in multilayer networks

Marya Bazzi
(Alan Turing Institute)
Abstract

Multilayer networks are a way to represent dependent connectivity patterns — e.g., time-dependence, multiple types of interactions, or both — that arise in many applications and which are difficult to incorporate into standard network representations. In the study of multilayer networks, it is important to investigate mesoscale (i.e., intermediate-scale) structures, such as communities, to discover features that lie between the microscale and the macroscale. We introduce a framework for the construction of generative models for mesoscale structure in multilayer networks.  We model dependency at the level of partitions rather than with respect to edges, and treat the process of generating a multilayer partition separately from the process of generating edges for a given multilayer partition. Our framework can admit many features of empirical multilayer networks and explicitly incorporates a user-specified interlayer dependency structure. We discuss the parameters and some properties of our framework, and illustrate an example of its use with benchmark models for multilayer community-detection tools. 

 

Tue, 25 Feb 2020

10:00 - 11:00
S2.37

Mathematics of Brain Modelling - Spatial navigation in preclinical and clinical Alzheimer’s disease

Professor Michael Hornberger
(University of East Anglia)
Further Information

Booking Essential ociam@maths.ox.ac.uk

Abstract

Spatial navigation in preclinical and clinical Alzheimer’s disease - Relevance for topological data analysis?

Spatial navigation changes are one of the first symptoms of Alzheimer’s disease and also lead to significant safeguarding issues in patients after diagnosis. Despite their significant implications, spatial navigation changes in preclinical and clinical Alzheimer’s disease are still poorly understood. In the current talk, I will explain the spatial navigation processes in the brain and their relevance to Alzheimer’s disease. I will then introduce our Sea Hero Quest project, which created the first global benchmark data for spatial navigation in ~4.5 million people worldwide via a VR-based game. I will present data from the game, which has allowed to create personalised benchmark data for at-risk-of-Alzheimer’s people. The final part of my talk will explore how real-world environment & entropy impacts on dementia patients getting lost and how this has relevance for GPS technology based safeguarding and car driving in Alzheimer’s disease.

Mon, 24 Feb 2020

16:00 - 17:00

How close together are the rational points on a curve?

Netan Dogra
Abstract

Understanding the size of the rational points on a curve of higher genus is one of the major open problems in the theory of Diophantine equations. In this talk I will discuss the related problem of understanding how close together rational points can get. I will also discuss the relation to the subject of (generalised) Wieferich primes.

Mon, 24 Feb 2020

16:00 - 17:00
L4

$\Gamma$- convergence and homogenisation for a class of degenerate functionals

Federica Dragoni
(Cardiff University)
Abstract

I will present a $\Gamma$-convergence for degenerate integral functionals related to homogenisation problems  in the Heisenberg group. In our  case, both the rescaling and the notion of invariance or periodicity are chosen in a way motivated by the geometry of the Heisenberg group. Without using special geometric features, these functionals would be neither coercive nor periodic, so classic results do not apply.  All the results apply to the more general case of Carnot groups. Joint with Nicolas Dirr, Paola Mannucci and Claudio Marchi.

Mon, 24 Feb 2020
15:45
L6

Square pegs and non-orientable surfaces

Marco Golla
(Universite de Nantes)
Abstract

The square peg problem asks whether every Jordan curve in the
plane contains the vertices of a square. Inspired by Hugelmeyer's approach
for smooth curves, we give a topological proof for "locally 1-Lipschitz"
curves using 4-dimensional topology.

Mon, 24 Feb 2020

15:45 - 16:45
L3

Parabolic and hyperbolic Liouville equations

YUZHAO WANG
(Birmingham University)
Abstract

We will talk about some stochastic parabolic and hyperbolic partial differential equations (SPDEs), which arise naturally in the context of Liouville quantum gravity. These dynamics are proposed to preserve the Liouville measure, which has been constructed recently in the series of works by David-Kupiainen-Rhodes-Vargas. We construct global solutions to these equations under some conditions and then show the invariance of the Liouville measure under the resulting dynamics. As a by-product, we also answer an open problem proposed by Sun-Tzvetkov recently.
 

Mon, 24 Feb 2020

14:15 - 15:15
L3

Sharp estimates for metastable transition times in Allen-Cahn SPDEs on the torus

NILS BERGLUND
(Universite d'Orleans)
Abstract


Stochastic processes subject to weak noise often show a metastable
behaviour, meaning that they converge to equilibrium extremely slowly;
typically, the convergence time is exponentially large in the inverse
of the variance of the noise (Arrhenius law).
  
In the case of finite-dimensional Ito stochastic differential
equations, the large-deviation theory developed in the 1970s by
Freidlin and Wentzell allows to prove such Arrhenius laws and compute
their exponent. Sharper asymptotics for relaxation times, including the
prefactor of the exponential term (Eyring–Kramers laws) are known, for
instance, if the stochastic differential equation involves a gradient
drift term and homogeneous noise. One approach that has been very
successful in proving Eyring–Kramers laws, developed by Bovier,
Eckhoff, Gayrard and Klein around 2005, relies on potential theory.
  
I will describe Eyring–Kramers laws for some parabolic stochastic PDEs
such as the Allen–Cahn equation on the torus. In dimension 1, an
Arrhenius law was obtained in the 1980s by Faris and Jona-Lasinio,
using a large-deviation principle. The potential-theoretic approach
allows us to compute the prefactor, which turns out to involve a
Fredholm determinant. In dimensions 2 and 3, the equation needs to be
renormalized, which turns the Fredholm determinant into a
Carleman–Fredholm determinant.
  
Based on joint work with Barbara Gentz (Bielefeld), and with Ajay
Chandra (Imperial College), Giacomo Di Gesù (Vienna) and Hendrik Weber
(Warwick). 

References: 
https://dx.doi.org/10.1214/EJP.v18-1802
https://dx.doi.org/10.1214/17-EJP60

Mon, 24 Feb 2020

14:15 - 15:15
L4

Higgs bundles and higher Teichmüller components

Oscar Garcia-Prada
(CSIC Madrid)
Abstract

It is well-known that the Teichmüller space of a compact surface can be identified with a connected component of the moduli space of representations of the fundamental group of the surface in PSL(2,R). Higher Teichmüller components are generalizations of this that exist for the moduli space of representations of the fundamental group into certain real simple Lie groups of higher rank. As for the usual Teichmüller space, these components consist entirely  of discrete and faithful representations. Several cases have been identified over the years. First, the Hitchin components for split groups, then the maximal Toledo invariant components for Hermitian groups, and more recently certain components for SO(p,q). In this talk, I will describe a general construction of (still somewhat conjecturally) all possible Teichmüller components, and a parametrization of them using Higgs bundles.

Mon, 24 Feb 2020
12:45
L3

Quantizing superstrings in AdS/CFT, perturbatively and beyond

Valentina Forini
(City University London)
Abstract

String sigma-models relevant in the AdS/CFT correspondence are highly non-trivial two-dimensional field theories for which predictions at finite coupling exist, assuming integrability and/or the duality itself.  I will discuss general features of the perturbative approach to these models, and present progress on how to go extract finite coupling information in the most possibly general way, namely via the use of lattice field theory techniques. I will also present new results on certain ``defect-CFT’' correlators  at strong coupling. 

Sun, 23 Feb 2020

17:30 - 18:30
L1

Bach, the Universe and Everything - The Beauty of Mathematics SOLD OUT

Vicky Neale and The Orchestra of the Age of Enlightenment
Further Information

Bach, the Universe and Everything is a partnership between Oxford Mathematics, Music at Oxford and the Orchestra of the Age of Enlightenment where we put on our very own Sunday service for curious minds; a place where music and science rub shoulders. And a place where you get to join in.

The Science
You’ve heard that some people find mathematics as beautiful as Bach’s music, but you’re not really sure why. Dr Vicky Neale is here to convince you it is, as she explores the intoxicating mysteries of prime numbers and how they push the limits of human understanding.

The Music
BWV 196 is one of Bach’s first cantatas, written when he was in his early twenties for a friend’s wedding. It features a striking soprano aria, and an overall theme of ‘partnership’, with two factions of instruments uniting to become one.

Book here

Fri, 21 Feb 2020

15:00 - 16:00
N3.12

Two Models of Random Simplicial Complexes

Lewis Mead
(Queen Mary University of London)
Abstract

The talk will introduce two general models of random simplicial complexes which extend the highly studied Erdös-Rényi model for random graphs. These models include the well known probabilistic models of random simplicial complexes from Costa-Farber, Kahle, and Linial-Meshulam as special cases. These models turn out to have a satisfying Alexander duality relation between them prompting the hope that information can be transferred for free between them. This turns out to not quite be the case with vanishing probability parameters, but when all parameters are uniformly bounded the duality relation works a treat. Time permitting I may talk about the Rado simplicial complex, the unique (with probability one) infinite random simplicial complex.
This talk is based on various bits of joint work with Michael Farber, Tahl Nowik, and Lewin Strauss.

Fri, 21 Feb 2020

14:00 - 15:00
L1

Telling a mathematical story

Dr Vicky Neale and Dr Richard Earl
Abstract

Mathematicians need to talk and write about their mathematics.  This includes undergraduates and MSc students, who may be writing a dissertation or project report, preparing a presentation on a summer research project, or preparing for a job interview.  We think that it can be helpful to think of this as a form of storytelling, as this can lead to more effective communication.  For a story to be engaging you also need to know your audience.  In this session, we'll discuss what we mean by telling a mathematical story, give you some top tips from our experience, and give you a chance to think about how you might put this into practice.

Fri, 21 Feb 2020

14:00 - 15:00
L2

Tensors in biological data and algebraic statistics

Dr Anna Seigal
(Mathematical Institute University of Oxford)
Abstract

Tensors are higher dimensional analogues of matrices, used to record data with multiple changing variables. Interpreting tensor data requires finding multi-linear stucture that depends on the application or context. I will describe a tensor-based clustering method for multi-dimensional data. The multi-linear structure is encoded as algebraic constraints in a linear program. I apply the method to a collection of experiments measuring the response of genetically diverse breast cancer cell lines to an array of ligands. In the second part of the talk, I will discuss low-rank decompositions of tensors that arise in statistics, focusing on two graphical models with hidden variables. I describe how the implicit semi-algebraic description of the statistical models can be used to obtain a closed form expression for the maximum likelihood estimate.

Thu, 20 Feb 2020

16:00 - 17:00
L5

Analytic rank of automorphic L-functions

Hung Bui
(University of Manchester)
Abstract

The famous Birch & Swinnerton-Dyer conjecture predicts that the (algebraic) rank of an elliptic curve is equal to the so-called analytic rank, which is the order of vanishing of the associated L-functions at the central point. In this talk, we shall discuss the analytic rank of automorphic L-functions in an "alternate universe". This is joint work with Kyle Pratt and Alexandru Zaharescu.

Thu, 20 Feb 2020

16:00 - 17:30
L3

The brain's waterscape

Marie Elisabeth Rognes
(Simula Research Laboratory)
Further Information

Short bio:

Marie E. Rognes is Chief Research Scientist and Research Professor in Scientific Computing and Numerical Analysis at Simula Research Laboratory, Oslo, Norway. She received her Ph.D from the University of Oslo in 2009 with an extended stay at the University of Minneapolis, Twin Cities, Minneapolis, US. She has been at Simula Research Laboratory since 2009, led its Department for Biomedical Computing from 2012-2016 and currently leads a number of research projects focusing on mathematical modelling and numerical methods for brain mechanics including an ERC Starting Grant in Mathematics. She won the 2015 Wilkinson Prize for Numerical Software, the 2018 Royal Norwegian Society of Sciences and Letters Prize for Young Researchers within the Natural Sciences, and was a Founding Member of the Young Academy of Norway.

Abstract

Your brain has its own waterscape: whether you are reading or sleeping, fluid flows around or through the brain tissue and clears waste in the process. These physiological processes are crucial for the well-being of the brain. In spite of their importance we understand them but little. Mathematics and numerics could play a crucial role in gaining new insight. Indeed, medical doctors express an urgent need for modeling of water transport through the brain, to overcome limitations in traditional techniques. Surprisingly little attention has been paid to the numerics of the brain’s waterscape however, and fundamental knowledge is missing. In this talk, I will discuss mathematical models and numerical methods for the brain's waterscape across scales - from viewing the brain as a poroelastic medium at the macroscale and zooming in to studying electrical, chemical and mechanical interactions between brain cells at the microscale.
 

Thu, 20 Feb 2020

15:00 - 16:00
C5

Ribbons and moduli spaces of stable pairs

Aurelio Carlucci
Abstract

This talk aims to provide a simple introduction on how to probe the
explicit geometry of certain moduli schemes arising in enumerative
geometry. Stable pairs, introduced by Pandharipande and Thomas in 2009, offer a curve-counting theory which is tamer than the Hilbert scheme of
curves used in Donaldson-Thomas theory. In particular, they exclude
curves with zero-dimensional or embedded components.

Ribbons are non-reduced schemes of dimension one, whose non-reduced
structure has multiplicity two in a precise sense. Following Ferrand, Banica, and Forster, there are several results on how to construct
ribbons (and higher non-reduced structures) from the data of line
bundles on a reduced scheme. With this approach, we can consider stable
pairs whose underlying curve is a ribbon: the remaining data is
determined by allowing devenerations of the line bundle defining the
double structure.

Thu, 20 Feb 2020

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Learning with nonlinear Perron eigenvectors

Francesco Tudisco
(Gran Sasso Science Institute GSSI)
Abstract

In this talk I will present a Perron-Frobenius type result for nonlinear eigenvector problems which allows us to compute the global maximum of a class of constrained nonconvex optimization problems involving multihomogeneous functions.

I will structure the talk into three main parts:

First, I will motivate the optimization of homogeneous functions from a graph partitioning point of view, showing an intriguing generalization of the famous Cheeger inequality.

Second, I will define the concept of multihomogeneous function and I will state our main Perron-Frobenious theorem. This theorem exploits the connection between optimization of multihomogeneous functions and nonlinear eigenvectors to provide an optimization scheme that has global convergence guarantees.

Third, I will discuss a few example applications in network science and machine learning that require the optimization of multihomogeneous functions and that can be solved using nonlinear Perron eigenvectors.

 

 

Thu, 20 Feb 2020
13:00
N3.12

Will computers do mathematics?

Kevin Buzzard
(Imperial College London)
Abstract

Computers can now beat humans at chess and at go. Surely one day they will beat us at proving theorems. But when will it happen, how will it happen, and what should humans be doing in order to make it happen? Furthermore -- do we actually want it to happen? Will they generate incomprehensible proofs, which teach us nothing? Will they find mistakes in the human literature?

I will talk about how I am training undergraduates at Imperial College London to do their problem sheets in a formal proof verification system, and how this gamifies mathematics. I will talk about mistakes in the modern pure mathematics literature, and ask what the point of modern pure mathematics is.