Date
Thu, 10 Nov 2022
Time
12:00 - 13:00
Location
L1
Speaker
Prof. Arezki Boudaoud
Organisation
Ecole Polytechnique

What sets the size and form of living organisms is still, by large, an open question. During this talk, I will illustrate how we are addressing this question by examining the links between spatial scales, from subcellular to organ, both experimentally and theoretically. First, I will present how we are deriving continuous plant growth mechanical models using homogenisation. Second, I will discuss how directionality of organ growth emerges from cell level. Last, I will present predictions of fluctuations at multiple scales and experimental tests of these predictions, by developing a data analysis approach that is broadly relevant to geometrically disordered materials.

 

Further Information

Biography

After a doctorate in physics at the École normale supérieure in Paris, Arezki Boudaoud completed his post-doctorate in the Mathematics Department of the prestigious MIT (Massachusetts Institute of Technology). He then returned to the Statistical Physics Laboratory of the ENS ULM as a research officer. His work focused on liquid films and thin solids. In parallel, he began to take an interest in morphogenesis in the living and identified the contributions of the mechanical forces to the growth of yeast and the development of plants.

In 2009 the physicist switched to study biology: he joined the École normale supérieure de Lyon as a professor in the Department of Biology and has since led an interdisciplinary team in the Reproduction and development of Plants (RDP) laboratory and the Joliot-Curie laboratory (LJC). The team, entitled "Biophysics and Development", works to understand the mechanisms of morphogenesis in plants, combining tools of biology and physics.

Taken from ENS Lyon website

Please contact us with feedback and comments about this page. Last updated on 02 Nov 2022 11:09.