Tue, 03 May 2022

14:00 - 15:00
L4

The structure of planar graphs

David Wood
(Monash University)
Abstract

This talk is about the global structure of planar graphs and other more general graph classes. The starting point is the Lipton-Tarjan separator theorem, followed by Baker's decomposition of a planar graph into layers with bounded treewidth. I will then move onto layered treewidth, which is a more global version of Baker's decomposition. Layered treewidth is a precursor to the recent development of row treewidth, which has been the key to solving several open problems. Finally, I will describe generalisations for arbitrary minor-closed classes.

Tue, 03 May 2022

14:00 - 15:00
C6

How Network Filtering can extract knowledge from data

Tiziana Di Matteo
(King's College London)
Abstract

In this talk I will present network-theoretic tools [1-2] to filter information in large-scale datasets and I will show that these are powerful tools to study complex datasets. In particular I will introduce correlation-based information filtering networks and the planar filtered graphs (PMFG) and I will show that applications to financial data-sets can meaningfully identify industrial activities and structural market changes [3-4].

It has been shown that by making use of the 3-clique structure of the PMFG a clustering can be extracted allowing dimensionality reduction that keeps both local information and global hierarchy in a deterministic manner without the use of any prior information [5-6]. However, the algorithm so far proposed to construct the PMFG is numerically costly with O(N3) computational complexity and cannot be applied to large-scale data. There is therefore scope to search for novel algorithms that can provide, in a numerically efficient way, such a reduction to planar filtered graphs. I will introduce a new algorithm, the TMFG (Triangulated Maximally Filtered Graph), that efficiently extracts a planar subgraph which optimizes an objective function. The method is scalable to very large datasets and it can take advantage of parallel and GPUs computing [7]. Filtered graphs are valuable tools for risk management and portfolio optimization too [8-9] and they allow to construct probabilistic sparse modeling for financial systems that can be used for forecasting, stress testing and risk allocation [10].

Filtered graphs can be used not only to extract relevant and significant information but more importantly to extract knowledge from an overwhelming quantity of unstructured and structured data. I will provide a practitioner example by a successful Silicon Valley start-up, Yewno. The key idea underlying Yewno’s products is the concept of the Knowledge Graph, a framework based on filtered graph research, whose goal is to extract signals from evolving corpus of data. The common principle is that a methodology leveraging on developments in Computational linguistics and graph theory is used to build a graph representation of knowledge [11], which can be automatically analysed to discover hidden relations between components in many different complex systems. This Knowledge Graph based framework and inference engine has a wide range of applications, including finance, economics, biotech, law, education, marketing and general research.

 

[1] T. Aste, T. Di Matteo, S. T. Hyde, Physica A 346 (2005) 20.

[2] T. Aste, Ruggero Gramatica, T. Di Matteo, Physical Review E 86 (2012) 036109.

[3] M. Tumminello, T. Aste, T. Di Matteo, R. N. Mantegna, PNAS 102, n. 30 (2005) 10421.

[4] N. Musmeci, Tomaso Aste, T. Di Matteo, Journal of Network Theory in Finance 1(1) (2015) 1-22.

[5] W.-M. Song, T. Di Matteo, and T. Aste, PLoS ONE 7 (2012) e31929.

[6] N. Musmeci, T. Aste, T. Di Matteo, PLoS ONE 10(3): e0116201 (2015).

[7] Guido Previde Massara, T. Di Matteo, T. Aste, Journal of Complex networks 5 (2), 161 (2016).

[8] F. Pozzi, T. Di Matteo and T. Aste, Scientific Reports 3 (2013) 1665.

[9] N. Musmeci, T. Aste and T. Di Matteo, Scientific Reports 6 (2016) 36320.

[10] Wolfram Barfuss, Guido Previde Massara, T. Di Matteo, T. Aste, Phys.Rev. E 94 (2016) 062306.

[11] Ruggero Gramatica, T. Di Matteo, Stefano Giorgetti, Massimo Barbiani, Dorian Bevec and Tomaso Aste, PLoS One (2014) PLoS ONE 9(1): e84912.

Tue, 03 May 2022

14:00 - 14:30
L3

Permutation compressors for provably faster distributed nonconvex optimization

Rafal Szlendak
(University of Warwick)
Abstract
In this talk, we are going to explore our recent paper that builds upon MARINA -- the current state-of-the-art distributed non-convex optimization method in terms of theoretical communication complexity. Theoretical superiority of this method can be largely attributed to two sources: the use of a carefully engineered biased stochastic gradient estimator, which leads to a reduction in the number of communication rounds, and the reliance on independent stochastic communication compression operators, which leads to a reduction in the number of transmitted bits within each communication round. In this paper we
 
i) extend the theory of MARINA to support a much wider class of potentially correlated compressors, extending the reach of the method beyond the classical independent compressors setting,  
 
ii) show that a new quantity, for which we coin the name Hessian variance, allows us to significantly refine the original analysis of MARINA without any additional assumptions, and 
 

iii) identify a special class of correlated compressors based on the idea of random permutations, for which we coin the term PermK. The use of this technique results in the strict improvement on the previous MARINA rate. In the low Hessian variance regime, the improvement can be as large as √n, when d > n, and 1 + √d/n, when n<=d, where n is the number of workers and d is the number of parameters describing the model we are learning.

Tue, 03 May 2022

12:30 - 13:30
C5

A model of internal stresses within hydrogel-coated stem cells in transit to the liver

Simon Finney
(Mathematical Institute (University of Oxford))
Abstract

In 2020, cirrhosis and other liver diseases were among the top five causes of death for
individuals aged 35-65 in Scotland, England and Wales. At present, the only curative
treatment for end-stage liver disease is through transplant which is unsustainable.
Stem cell therapies could provide an alternative. By encapsulating the stem cells we
can modulate the shear stress imposed on each cell to promote integrin expression
and improve the probability of engraftment. We model an individual, hydrogel-coated
stem cell moving along a fluid-filled channel due to a Stokes flow. The stem cell is
treated as a Newtonian fluid and the coating is treated as a poroelastic material with
finite thickness. In the limit of a stiff coating, a semi-analytical approach is developed
which exploits a decoupling of the fluids and solid problems. This enables the tractions
and pore pressures within the coating to be obtained, which then feed directly into a
purely solid mechanics problem for the coating deformation. We conduct a parametric
study to elucidate how the properties of the coating can be tuned to alter the stress
experienced by the cell.

Tue, 03 May 2022

12:00 - 13:00
L4

Burns holography

Atul Sharma
((Oxford University))
Abstract

Holography in asymptotically flat spaces is one of the most coveted goals of modern mathematical physics. In this talk, I will motivate a novel holographic description of self-dual SO(8) Yang-Mills + self-dual conformal gravity on a Euclidean signature, asymptotically flat background called Burns space. The holographic dual lives on a stack of D1-branes wrapping a CP^1 cycle in the twistor space of R^4 and is given by a gauged beta-gamma system with SO(8) flavor and a pair of defects at the north and south poles. It provides the first example of a stringy realization of (asymptotically) flat holography and is a Euclidean signature variant of celestial holography. This is based on ongoing work with Kevin Costello and Natalie Paquette.

Tue, 03 May 2022

10:00 - 12:00
L3

Regularity Theory of Spaces with Lower Ricci Curvature Bounds

Daniele Semola
(Oxford University)
Further Information

Aimed at: people interested on Geometric Analysis, Geometric Measure Theory and regularity theory in Partial Differential Equations.

Prerequisites: Riemannian and Differential Geometry, Metric spaces, basic knowledge of Partial Differential Equations.


Outline of the course:

  • Lecture 1:
    • Quick introduction to non-smooth spaces with lower Ricci curvature bounds [1, 23, 20, 17];
    • Basic properties of spaces with lower Ricci bounds: Bishop-Gromov inequality and doubling metric measure spaces, Bochner’s inequality, splitting theorem [19, 22];
    • Convergence and stability: Gromov-Hausdorff convergence, Gromov pre-compactness theorem, stability and tangent cones [19, 22];
  • Lecture 2:
    • Functional form of the splitting theorem via splitting maps;
    • δ-splitting maps and almost splitting theorem [5, 7];
    • Definition of metric measure cone, stability of RCD property for cones [16];
    • Functional form of the volume cone implies metric cone [12];
    • Almost volume cone implies almost metric cone via stability.
  • Lecture 3:
    • Maximal function type arguments;
    • Existence of Euclidean tangents;
    • Rectifiability and uniqueness of tangents at regular points [18];
    • Volume convergence [9, 13];
    • Tangent cones are metric cones on noncollapsed spaces [5, 6, 13].
  • Lecture 4:
    • Euclidean volume rigidity [9, 6, 13];
    • ε-regularity and classical Reifenberg theorem [6, 15, 7];
    • Harmonic functions on metric measure cones, frequency and separation of variables [7];
    • Transformation theorem for splitting maps [7];
    • Proof of canonical Reifenberg theorem via harmonic splitting maps [7].
  • Lecture 5:
    • Regular and singular sets [6, 13];
    • Stratification of singular sets [6, 13];
    • Examples of singular behaviours [10, 11];
    • Hausdorff dimension bounds via Federer’s dimension reduction [6, 13];
    • Quantitative stratification of singular sets [8];
    • An introduction to quantitative differentiation [3];
    • Cone splitting principle [8];
    • Quantitative singular sets and Minkowski content bounds [8].
  • Lecture 6:
    • The aim of this lecture is to give an introduction to the most recent developments of the regularity theory for non collapsed Ricci limit spaces. We will introduce the notion of neck region in this context and then outline how they have been used to prove rectifiability of singular sets in any codimension for non collapsed Ricci limit spaces by Cheeger-Jiang-Naber [7].
Abstract

The aim of this course is to give an introduction to the regularity theory of non-smooth spaces with lower bounds on the Ricci Curvature. This is a quickly developing field with motivations coming from classical questions in Riemannian and differential geometry and with connections to Probability, Geometric Measure Theory and Partial Differential Equations.


In the lectures we will focus on the non collapsed case, where much sharper results are available, mainly adopting the synthetic approach of the RCD theory, rather than following the original proofs.


The techniques used in this setting have been applied successfully in the study of Minimal surfaces, Elliptic PDEs, Mean curvature flow and Ricci flow and the course might be of interest also for people working in these subjects.

Mon, 02 May 2022

16:00 - 17:00
C6

Random matrices with integer entries

Valeriya Kovaleva
Abstract

Many classical arithmetic problems ranging from the elementary ones such as the density of square-free numbers to more difficult such as the density of primes, can be extended to integer matrices. Arithmetic problems over higher dimensions are typically much more difficult. Indeed, the Bateman-Horn conjecture predicting the density of numbers giving prime values of multivariate polynomials is very much open. In this talk I give an overview of the unfortunately brief history of integer random matrices.

Mon, 02 May 2022

15:30 - 16:30
Online

Localization and decomposition

Rufus Willett
(University of Hawaii )
Abstract

Let X be a closed Riemannian manifold, and represent the algebra C(X) of continuous functions on X on the Hilbert space L^2(X) by multiplication.  Inspired by the heat kernel proof of the Atiyah-Singer index theorem, I'll explain how to describe K-homology (i.e. the dual theory to Atiyah-Hirzebruch K-theory) in terms of parametrized families of operators on L^2(X) that get more and more 'local' in X as time tends to infinity.

I'll then switch perspectives from C(X) -- the prototypical example of a commutative C*-algebra -- to noncommutative C*-algebras built from discrete groups, and explain how the underlying large-scale geometry of the groups can give rise to approximate 'decompositions' of the C*-algebras.  I'll then explain how to use these decompositions and localization in the sense above to compute K-homology, and the connection to some conjectures in topology, geometry, and C*-algebra theory.

Mon, 02 May 2022
14:15
L5

Hypersurfaces with prescribed-mean-curvature: existence and properties

Costante Bellettini
(University College London)
Abstract

Let $N$ be a compact Riemannian manifold of dimension 3 or higher, and $g$ a Lipschitz non-negative (or non-positive) function on $N$. In joint works with Neshan Wickramasekera we prove that there exists a closed hypersurface $M$ whose mean curvature attains the values prescribed by $g$. Except possibly for a small singular set (of codimension 7 or higher), the hypersurface $M$ is $C^2$ immersed and two-sided (it admits a global unit normal); the scalar mean curvature at $x$ is $g(x)$ with respect to a global choice of unit normal. More precisely, the immersion is a quasi-embedding, namely the only non-embedded points are caused by tangential self-intersections: around such a non-embedded point, the local structure is given by two disks, lying on one side of each other, and intersecting tangentially (as in the case of two spherical caps touching at a point). A special case of PMC (prescribed-mean-curvature) hypersurfaces is obtained when $g$ is a constant, in which the above result gives a CMC (constant-mean-curvature) hypersurface for any prescribed value of the mean curvature.

Fri, 29 Apr 2022

16:00 - 17:00
L1

North Meets South

Akshat Mugdal and Renee Hoekzema
Abstract
Speaker: Akshat Mugdal
 
Title: Fantastic arithmetic structures and where to find them
 
Abstract: This talk will be a gentle introduction to additive combinatorics, an area lying somewhat at the intersection of combinatorics, number theory and harmonic analysis, which concerns itself with identification and classification of sets with additive structure. In this talk, I will outline various notions of when a finite set of integers may be considered to be additively structured and how these different notions interconnect with each other, with various examples sprinkled throughout. I will provide some further applications and open problems surrounding this circle of ideas, including a quick study of sets that exhibit multiplicative structure and their interactions with the aforementioned notions of additivity.
 
 
Speaker: Renee Hoekzema 

Title: Exploring the space of genes in single cell transcriptomics datasets

Abstract: Single cell transcriptomics is a revolutionary technique in biology that allows for the measurement of gene expression levels across the genome for many individual cells simultaneously. Analysis of these vast datasets reveals variations in expression patterns between cells that were previously out of reach. On top of discrete clustering into cell types, continuous patterns of variation become visible, which are associated to differentiation pathways, cell cycle, response to treatment, adaptive heterogeneity or what just whatever the cells are doing at that moment. Current methods for assigning biological meaning to single cell experiments relies on predefining groups of cells and computing what genes are differentially expressed between them. The complexity found in modern single cell transcriptomics datasets calls for more intricate methods to biologically interpret both discrete clusters as well as continuous variations. We propose topologically-inspired data analysis methods that identify coherent gene expression patterns on multiple scales in the dataset. The multiscale methods consider discrete and continuous transcriptional patterns on equal footing based on the mathematics of spectral graph theory. As well as selecting important genes, the methodology allows one to visualise and explore the space of gene expression patterns in the dataset.

Fri, 29 Apr 2022

15:00 - 16:00
L4

Signed barcodes for multiparameter persistence

Magnus Botnan
(Free University of Amsterdam)
Abstract

Moving from persistent homology in one parameter to multiparameter persistence comes at a significant increase in complexity. In particular, the notion of a barcode does not generalize straightforwardly. However, in this talk, I will show how it is possible to assign a unique barcode to a multiparameter persistence module if one is willing to take Z-linear combinations of intervals. The theoretical discussion will be complemented by numerical experiments. This is joint work with Steffen Oppermann and Steve Oudot.

Fri, 29 Apr 2022

14:00 - 15:00
Virtual

Spreading mechanics and differentiation of astrocytes during retinal development

Prof Tracy Stepien
(Department of Mathematics University of Florida)
Abstract

In embryonic development, formation of the retinal vasculature is  critically dependent on prior establishment of a mesh of astrocytes.  
Astrocytes emerge from the optic nerve head and then migrate over the retinal surface in a radially symmetric manner and mature through 
differentiation.  We develop a PDE model describing the migration and  differentiation of astrocytes, and numerical simulations are compared to 
experimental data to assist in elucidating the mechanisms responsible for the distribution of astrocytes via parameter analysis. This is joint 
work with Timothy Secomb.

Thu, 28 Apr 2022

16:00 - 17:00
L4

A modular construction of unramified p-extensions of Q(N^{1/p})

Jaclyn Lang
( Temple University )
Abstract

In his 1976 proof of the converse of Herbrand’s theorem, Ribet used Eisenstein-cuspidal congruences to produce unramified degree-p extensions of the p-th cyclotomic field when p is an odd prime. After reviewing Ribet’s strategy, we will discuss recent work with Preston Wake in which we apply similar techniques to produce unramified degree-p extensions of Q(N^{1/p}) when N is a prime that is congruent to -1 mod p. This answers a question posed on Frank Calegari’s blog.

Thu, 28 Apr 2022

14:00 - 15:00
L3

An SDP approach for tensor product approximation of linear operators on matrix spaces

Andre Uschmajew
(Max Planck Institute Leipzig)
Abstract

Tensor structured linear operators play an important role in matrix equations and low-rank modelling. Motivated by this we consider the problem of approximating a matrix by a sum of Kronecker products. It is known that an optimal approximation in Frobenius norm can be obtained from the singular value decomposition of a rearranged matrix, but when the goal is to approximate the matrix as a linear map, an operator norm would be a more appropriate error measure. We present an alternating optimization approach for the corresponding approximation problem in spectral norm that is based on semidefinite programming, and report on its practical performance for small examples.
This is joint work with Venkat Chandrasekaran and Mareike Dressler.

Thu, 28 Apr 2022

12:00 - 13:00
L1

Modeling and Design Optimization for Pleated Membrane Filters

Yixuan Sun & Zhaohe Dai
(Mathematical Institute (University of Oxford))
Abstract

Statics and dynamics of droplets on lubricated surfaces

Zhaohe Dai

The abstract is "Slippery liquid infused porous surfaces are formed by coating surface with a thin layer of oil lubricant. This thin layer prevents other droplets from reaching the solid surface and allows such deposited droplets to move with ultra-low friction, leading to a range of applications. In this talk, we will discuss the static and dynamic behaviour of droplets placed on lubricated surfaces. We will show that the layer thickness and the size of the substrate are key parameters in determining the final equilibrium. However, the evolution towards the equilibrium is extremely slow (on the order of days for typical experimental parameter values). As a result, we suggest that most previous experiments with oil films lubricating smooth substrates are likely to have been in an evolving, albeit slowly evolving, transient state.

 

Modeling and Design Optimization for Pleated Membrane Filters

Yixuan Sun

Membrane filtration is widely used in many applications, ranging from industrial processes to everyday living activities. With growing interest from both industrial and academic sectors in understanding the various types of filtration processes in use, and in improving filter performance, the past few decades have seen significant research activity in this area. Experimental studies can be very valuable, but are expensive and time-consuming, therefore theoretical studies offer potential as a cost-effective and predictive way to improve on current filter designs. In this work, mathematical models, derived from first principles and simplified using asymptotic analysis, are proposed for pleated membrane filters, where the macroscale flow problem of Darcy flow through a pleated porous medium is coupled to the microscale fouling problem of particle transport and deposition within individual pores of the membrane. Asymptotically-simplified models are used to describe and evaluate the membrane performance numerically and filter design optimization problems are formulated and solved for industrially-relevant scenarios. This study demonstrates the potential of such modeling to guide industrial membrane filter design for a range of applications involving purification and separation.

Wed, 27 Apr 2022

16:00 - 17:00
L6

Embeddings of Trees and Solvable Baumslag-Solitar Groups

Patrick Nairne
(University of Oxford)
Abstract

The question of when you can quasiisometrically embed a solvable Baumslag-Solitar group into another turns out to be equivalent to the question of when you can (1,A)-quasiisometrically embed a rooted tree into another rooted tree. We will briefly describe the geometry of the solvable Baumslag-Solitar groups before attacking the problem of embedding trees. We will find that the existence of (1,A)-quasiisometric embeddings between trees is intimately related to the boundedness of a family of integer sequences. 

Wed, 27 Apr 2022

14:00 - 15:00
Virtual

Kazhdan-Lusztig Equivalence at the Iwahori Level

Yuchen Fu
(Harvard)
Abstract
We construct an equivalence between Iwahori-integrable representations of affine Lie algebras and representations of the "mixed" quantum group, thus confirming a conjecture by Gaitsgory. Our proof utilizes factorization methods: we show that both sides are equivalent to algebraic/topological factorization modules over a certain factorization algebra, which can then be compared via Riemann-Hilbert. On the quantum group side this is achieved via general machinery of homotopical algebra, whereas the affine side requires inputs from the theory of (renormalized) ind-coherent sheaves as well as compatibility with global geometric Langlands over P1. This is joint work with Lin Chen.
 
Tue, 26 Apr 2022

15:30 - 16:30
L6

Emergent random matrix behaviour in dual-unitary circuit dynamics

Pieter Claeys
(University of Cambridge)
Abstract

The dynamics of quantum many-body systems is intricately related to random matrix theory (RMT), to such a degree that quantum chaos is even defined through random matrix level statistics. However, exact results on this connection are typically precluded by the exponentially large Hilbert space. After a short introduction to the role of RMT in many-body dynamics, I will show how dual-unitary circuits present a minimal model of quantum chaos where this connection can be made rigorous. This will be illustrated using a new kind of emergent random matrix behaviour following a quantum quench: starting from a time-evolved state, an ensemble of pure states supported on a small subsystem can be generated by performing projective measurements on the remainder of the system, leading to a projected ensemble. In chaotic quantum systems it was conjectured that such projected ensembles become indistinguishable from the uniform Haar-random ensemble and lead to a quantum state design, which can be shown to hold exactly in dual-unitary circuit dynamics.

Tue, 26 Apr 2022

14:00 - 15:00
C6

Drug Pair Scoring Theory, Models and Software

Benedek Rozemberczki
Further Information

Dr. Benedek Rozemberczki is currently a machine learning engineer at AstraZeneca.

Abstract

Pair combination repurposing of drugs is a common challenge faced by researchers in the pharmaceutical industry. Network biology and molecular machine learning based drug pair scoring techniques offer computation tools to predict the interaction, polypharmacy side effects and synergy of drugs. In this talk we overview of three things: (a) the theory and unified model of drug pair scoring (b) a relational machine learning model that can solve the pair scoring task (c) the design of large-scale machine learning systems needed to tackle the pair scoring task.

ArXiv links: https://arxiv.org/abs/2111.02916https://arxiv.org/abs/2110.15087https://arxiv.org/abs/2202.05240.

ML library: https://github.com/AstraZeneca/chemicalx

Tue, 26 Apr 2022

13:30 - 15:00
Imperial College

CDT in Mathematics of Random Systems April Workshop 2022

Julian Meier, Omer Karin
(University of Oxford/Imperial College London)
Further Information

Please contact @email for remote viewing details

Abstract

1:30pm Julian Meier, University of Oxford

Interacting-Particle Systems with Elastic Boundaries and Nonlinear SPDEs

We study interacting particle systems on the positive half-line. When we impose an elastic boundary at zero, the particle systems give rise to nonlinear SPDEs with irregular boundaries. We show existence and uniqueness of solutions to these equations. To deal with the nonlinearity we establish a probabilistic representation of solutions and regularity in L2.

2:15pm Dr Omer Karin, Imperial College London

Mathematical Principles of Biological Regulation

Modern research in the life sciences has developed remarkable methods to measure and manipulate biological systems. We now have detailed knowledge of the molecular interactions inside cells and the way cells communicate with each other. Yet many of the most fundamental questions (such as how do cells choose and maintain their identities? how is development coordinated? why do homeostatic processes fail in disease?) remain elusive, as addressing them requires a good understanding of complex dynamical processes. In this talk, I will present a mathematical approach for tackling these questions, which emphasises the role of control and of emergent properties. We will explore the application of this approach to various questions in biology and biomedicine, and highlight important future directions.

 

Tue, 26 Apr 2022

12:00 - 13:00
L3

What is the iε for the S-matrix?

Holmfridur S. Hannesdottir
(IAS Princeton)
Abstract

Can the S-matrix be complexified in a way consistent with causality? Since the 1960's, the affirmative answer to this question has been well-understood for 2→2 scattering of the lightest particle in theories with a mass gap at low momentum transfer, where the S-matrix is analytic everywhere except at normal-threshold branch cuts. We ask whether an analogous picture extends to realistic theories, such as the Standard Model, that include massless fields, UV/IR divergences, and unstable particles. Especially in the presence of light states running in the loops, the traditional iε prescription for approaching physical regions might break down, because causality requirements for the individual Feynman diagrams can be mutually incompatible. We demonstrate that such analyticity problems are not in contradiction with unitarity. Instead, they should be thought of as finite-width effects that disappear in the idealized 2→2 scattering amplitudes with no unstable particles, but might persist at higher multiplicity. To fix these issues, we propose an iε-like prescription for deforming branch cuts in the space of Mandelstam invariants without modifying the analytic properties. This procedure results in a complex strip around the real part of the kinematic space, where the S-matrix remains causal. To help with the investigation of related questions, we introduce holomorphic cutting rules, new approaches to dispersion relations, as well as formulae for local behavior of Feynman integrals near branch points, all of which are illustrated on explicit examples.

Tue, 26 Apr 2022

10:00 - 12:00
L3

Regularity Theory of Spaces with Lower Ricci Curvature Bounds

Daniele Semola
(Oxford University)
Further Information

Aimed at: people interested on Geometric Analysis, Geometric Measure Theory and regularity theory in Partial Differential Equations.

Prerequisites: Riemannian and Differential Geometry, Metric spaces, basic knowledge of Partial Differential Equations.


Outline of the course:

  • Lecture 1:
    • Quick introduction to non-smooth spaces with lower Ricci curvature bounds [1, 23, 20, 17];
    • Basic properties of spaces with lower Ricci bounds: Bishop-Gromov inequality and doubling metric measure spaces, Bochner’s inequality, splitting theorem [19, 22];
    • Convergence and stability: Gromov-Hausdorff convergence, Gromov pre-compactness theorem, stability and tangent cones [19, 22];
  • Lecture 2:
    • Functional form of the splitting theorem via splitting maps;
    • δ-splitting maps and almost splitting theorem [5, 7];
    • Definition of metric measure cone, stability of RCD property for cones [16];
    • Functional form of the volume cone implies metric cone [12];
    • Almost volume cone implies almost metric cone via stability.
  • Lecture 3:
    • Maximal function type arguments;
    • Existence of Euclidean tangents;
    • Rectifiability and uniqueness of tangents at regular points [18];
    • Volume convergence [9, 13];
    • Tangent cones are metric cones on noncollapsed spaces [5, 6, 13].
  • Lecture 4:
    • Euclidean volume rigidity [9, 6, 13];
    • ε-regularity and classical Reifenberg theorem [6, 15, 7];
    • Harmonic functions on metric measure cones, frequency and separation of variables [7];
    • Transformation theorem for splitting maps [7];
    • Proof of canonical Reifenberg theorem via harmonic splitting maps [7].
  • Lecture 5:
    • Regular and singular sets [6, 13];
    • Stratification of singular sets [6, 13];
    • Examples of singular behaviours [10, 11];
    • Hausdorff dimension bounds via Federer’s dimension reduction [6, 13];
    • Quantitative stratification of singular sets [8];
    • An introduction to quantitative differentiation [3];
    • Cone splitting principle [8];
    • Quantitative singular sets and Minkowski content bounds [8].
  • Lecture 6:
    • The aim of this lecture is to give an introduction to the most recent developments of the regularity theory for non collapsed Ricci limit spaces. We will introduce the notion of neck region in this context and then outline how they have been used to prove rectifiability of singular sets in any codimension for non collapsed Ricci limit spaces by Cheeger-Jiang-Naber [7].
Abstract

The aim of this course is to give an introduction to the regularity theory of non-smooth spaces with lower bounds on the Ricci Curvature. This is a quickly developing field with motivations coming from classical questions in Riemannian and differential geometry and with connections to Probability, Geometric Measure Theory and Partial Differential Equations.


In the lectures we will focus on the non collapsed case, where much sharper results are available, mainly adopting the synthetic approach of the RCD theory, rather than following the original proofs.


The techniques used in this setting have been applied successfully in the study of Minimal surfaces, Elliptic PDEs, Mean curvature flow and Ricci flow and the course might be of interest also for people working in these subjects.

Mon, 25 Apr 2022

16:00 - 17:00
C1

Primes in arithmetic progression

Lasse Grimmelt
Abstract

The distribution of primes in arithmetic progressions (AP) s a central question of analytic number theory. It is closely connected to the additive behaviour of primes (for example in the Goldbach problem) and application of sieves (for example in the Twin Prime problem). In this talk I will outline the basic results without going into technical details. The central questions I will consider are: What are the different tools used to study primes in AP? In what ranges of moduli are they useful? What error terms can be achieved? How do recent developments fit into the bigger picture?

Mon, 25 Apr 2022

15:30 - 16:30
L4

Knot theory and machine learning

Professor Marc Lackenby
((Oxford University) )
Abstract

Knot theory is divided into several subfields. One of these is hyperbolic knot theory, which is focused on the hyperbolic structure that exists on many knot complements. Another branch of knot theory is concerned with invariants that have connections to 4-manifolds, for example the knot signature and Heegaard Floer homology. In my talk, I will describe a new relationship between these two fields that was discovered with the aid of machine learning. Specifically, we show that the knot signature can be estimated surprisingly accurately in terms of hyperbolic invariants. We introduce a new real-valued invariant called the natural slope of a hyperbolic knot in the 3-sphere, which is defined in terms of its cusp geometry. Our main result is that twice the knot signature and the natural slope differ by at most a constant times the hyperbolic volume divided by the cube of the injectivity radius. This theorem has applications to Dehn surgery and to 4-ball genus. We will also present a refined version of the inequality where the upper bound is a linear function of the volume, and the slope is corrected by terms corresponding to short geodesics that have odd linking number with the knot. My talk will outline the proofs of these results, as well as describing the role that machine learning played in their discovery.

This is joint work with Alex Davies, Andras Juhasz, and Nenad Tomasev