Tue, 10 Jun 2025
16:00

Random multiplicative functions and their distribution

Seth Hardy
(University of Warwick)
Abstract

Understanding the size of the partial sums of the Möbius function is one of the most fundamental problems in analytic number theory. This motivated the 1944 paper of Wintner, where he introduced the concept of a random multiplicative function: a probabilistic model for the Möbius function. In recent years, it has been uncovered that there is an intimate connection between random multiplicative functions and the theory of Gaussian Multiplicative Chaos, an area of probability theory introduced by Kahane in the 1980's. We will survey selected results and discuss recent research on the distribution of partial sums of random multiplicative functions when restricted to integers with a large prime factor.

Tue, 10 Jun 2025
15:30
L4

Cohomological Donaldson—Thomas invariants for 3-manifolds

Pavel Safronov
(Edinburgh University)
Abstract
Cohomological Donaldson—Thomas theory associates cohomology groups to various moduli spaces in algebraic geometry, such as the moduli space of coherent sheaves on a Calabi—Yau 3-fold. In this talk I will explain some recent results on cohomological DT invariants in the setting of a real 3-manifold $M$. In terms of string theory it corresponds to counting D3 branes in the compactification of a type IIB string theory on $T^* M$. This setting of DT theory is particularly interesting due to its connections to topology (via skein modules), geometric representation theory (geometric Langlands program), and mathematical physics (analytic continuation of Chern—Simons theory). This talk is based on papers joint with Gunningham, Kinjo, Naef, and Park.



 

Tue, 10 Jun 2025
15:00
L6

Random quotients of hierarchically hyperbolic groups

Carolyn Abbott
Abstract

Quotients of hyperbolic groups (groups that act geometrically on a hyperbolic space) and their generalizations have long been a powerful tool for proving strong algebraic results. In this talk, I will describe the geometry of random quotients of certain of groups, that is, a quotient by a subgroup normally generated by k independent random walks.  I will focus on the class of hierarchically hyperbolic groups (HHGs), a generalization of hyperbolic groups that includes hyperbolic groups, mapping class groups, most CAT(0) cubical groups including right-angled Artin and Coxeter groups, many 3–manifold groups, and various combinations of such groups.  In this context, I will explain why a random quotient of an HHG that does not split as a direct product is again an HHG, definitively showing that the class of HHGs is quite broad.  I will also describe how the result can also be applied to understand the geometry of random quotients of hyperbolic and relatively hyperbolic groups. This is joint work with Giorgio Mangioni, Thomas Ng, and Alexander Rasmussen.

Tue, 10 Jun 2025
14:00
C6

Nearly G2-structures and G2-Laplacian co-flows.

Jakob Stein
(UNICAMP )
Abstract

In this talk, we discuss nearly G2 structures, which define positive Einstein metrics, and are, up to scale, critical points of a geometric flow called (modified) Laplacian co-flow. We will discuss a recent joint work with Jason Lotay showing that many of these nearly G2 critical points are unstable for the flow. 

Tue, 10 Jun 2025

14:00 - 15:00
L4

SDP, MaxCut, Discrepancy, and the Log-Rank Conjecture

Benny Sudakov
(ETH Zurich)
Abstract

Semidefinite programming (SDP) is a powerful tool in the design of approximation algorithms. After providing a gentle introduction to the basics of this method, I will explore a different facet of SDP and show how it can be used to derive short and elegant proofs of both classical and new estimates related to the MaxCut problem and discrepancy theory in graphs and matrices.

Building on this, I will demonstrate how these results lead to an improved upper bound on the celebrated log-rank conjecture in communication complexity.

Tue, 10 Jun 2025
13:00
L1

A new construction of c=1 Virasoro blocks

Andy Neitzke
(Yale)
Abstract

I will describe a new method for constructing conformal blocks for the Virasoro vertex algebra with central charge c=1, by "nonabelianization", relating them to conformal blocks for the Heisenberg algebra on a branched double cover. The construction is joint work with Qianyu Hao. Special cases give rise to formulas for tau-functions and solutions of integrable systems of PDE, such as Painleve I and its higher analogues. The talk will be reasonably self-contained (in particular I will explain what a conformal block is).

Mon, 09 Jun 2025
16:30
L4

Annuli and strip : the effect on the vortex patterns for the Ginzburg-Landau energy

Amandine Aftalion
(CNRS; laboratoire de mathématiques d'Orsay, Univ Paris-Saclay)
Abstract

We are going to study the Ginzburg-Landau energy for two specific geometries, related to the very experiments on fermionic condensates: annuli and strips 

The specific geometry of a strip provides connections between solitons and vortices, called solitonic vortices, which are vortices with a solitonic behaviour in the infinite direction of the strip. Therefore, they are very different from classical vortices which have an algebraic decay at infinity. We show that there exist stationary solutions to the Gross-Pitaevskii equation with k vortices on a transverse line, which bifurcate from the soliton solution as the width of the strip is increased. This is motivated by recent experiments on the instability of solitons by imposing a phase shift in an elongated condensate for bosonic or fermionic atoms.

For annuli, we prescribe a very large degree on the outer boundary and find that either there is a transition from a giant vortex to vortices also in the bulk but tending to the outer boundary.

This is joint work with Ph. Gravejat and E.Sandier for solitonice vortices and Remy Rodiac for annuli.
 

Mon, 09 Jun 2025
16:00
L6

TBC

Alexandra Kowalska
(Univesity of Oxford)
Abstract

TBC

Mon, 09 Jun 2025
15:30
L5

Planar loops and the homology of Temperley-Lieb algebras

Guy Boyde
(Universiteit Utrecht)
Abstract

Temperley-Lieb algebras are certain finite-dimensional algebras coming originally from statistical physics and knot theory. Around 2019, they became one of the first examples of homological stability for algebras (homology is here taken to be certain Tor-groups), when Boyd and Hepworth showed that in low dimensions the homology vanishes. We're now able to give complete calculations of their homology, which has a surprisingly rich structure (and in particular is very far from vanishing). This is joint work in progress with Rachael Boyd, Oscar Randal-Williams, and Robin Sroka. Prerequisites will be minimal: it will be enough to know what Tor is.

Mon, 09 Jun 2025
15:30
L3

Well-Posedness and Regularity of SDEs in the Plane with Non-Smooth Drift

Prof. Olivier Menoukeu Pamen
(University of Liverpool)
Abstract

Keywords: SDE on the plane, Brownian sheet, path by path uniqueness, space time local time integral, Malliavin calculus

 

In this talk, we discuss the existence, uniqueness, and regularisation by noise for stochastic differential equations (SDEs) on the plane. These equations can also be interpreted as quasi-linear hyperbolic stochastic partial differential equations (HSPDEs). More specifically, we address path-by-path uniqueness for multidimensional SDEs on the plane, under the assumption that the drift coefficient satisfies a spatial linear growth condition and is componentwise non-decreasing. In the case where the drift is only measurable and uniformly bounded, we show that the corresponding additive HSPDE on the plane admits a unique strong solution that is Malliavin differentiable. Our approach combines tools from Malliavin calculus with variational techniques originally introduced by Davie (2007), which we non-trivially extend to the setting of SDEs on the plane.


This talk is based on a joint works with A. M. Bogso, M. Dieye and F. Proske.

Mon, 09 Jun 2025
14:15
L5

$3$-$(\alpha,\delta)$-Sasaki manifolds and strongly positive curvature

Ilka Agricola
(Philipps-Universität Marburg)
Abstract
$3$-$(\alpha,\delta)$-Sasaki manifolds are a natural generalisation of $3$-Sasaki manifolds, which in dimension $7$ are intricately related to $G_2$ geometry. We show how these are closely related to various types of quaternionic Kähler orbifolds via connections with skew-torsion and an interesting canonical submersion. Making use of this relation we discuss curvature operators and show that in dimension 7 many such manifolds have strongly positive curvature, a notion originally introduced by Thorpe. 

 
Fri, 06 Jun 2025
16:00
C3

Sharp mixed moment bounds for zeta times a Dirichlet L-function

Markus Valås Hagen
(NTNU)
Abstract

A famous theorem of Selberg asserts that $\log|\zeta(\tfrac12+it)|$ is approximately a normal distribution with mean $0$ and variance $\tfrac12\log\log T$, when we sample $t\in [T,2T]$ uniformly. This extends in a natural way to a plethora of other $L$-functions, one of them being Dirichlet $L$-functions $L(s,\chi)$ with $\chi$ a primitive Dirichlet character. Viewing $\zeta(\tfrac12+it)$ and $L(\tfrac12+it,\chi)$ as normal variables, we expect indepedence between them, meaning that for fixed $V_1,V_2 \in \mathbb{R}$: $$\textrm{meas}_{t \in [T,2T]} \left\{\frac{\log|\zeta(\tfrac12+it)|}{\sqrt{\tfrac12 \log\log T}}\geq V_1 \text{   and   } \frac{\log|L(\tfrac12+it,\chi)|}{\sqrt{\tfrac12 \log\log T}}\geq V_2\right\} \sim \prod_{j=1}^2 \int_{V_j}^\infty e^{-x^2/2} \frac{\textrm{d}x}{\sqrt{2\pi}}.$$
    When $V_j\asymp \sqrt{\log\log T}$, i.e. we are considering values of order of the variance, the asymptotic above breaks down, but the Gaussian behaviour is still believed to hold to order. For such $V_j$ the behaviour of the joint distribution is decided by the moments $$I_{k,\ell}(T)=\int_T^{2T} |\zeta(\tfrac12+it)|^{2k}|L(\tfrac12+it,\chi)|^{2\ell}\, dt.$$ We establish that $I_{k,\ell}(T)\asymp T(\log T)^{k^2+\ell^2}$ for $0<k,\ell \leq 1$. The lower bound holds for all $k,\ell >0$. This allows us to decide the order of the joint distribution when $V_j =\alpha_j\sqrt{\log\log T}$ for $\alpha_j \in (0,\sqrt{2}]$. Other corollaries include sharp moment bounds for Dedekind zeta functions of quadratic number fields, and Hurwitz zeta functions with rational parameter. 
    

Fri, 06 Jun 2025
13:00
L5

Topologically good cover from gradient descent

Uzu Lim
(Queen Mary University London)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Abstract

The cover of a dataset is a fundamental concept in computational geometry and topology. In TDA (topological data analysis), it is especially used in computing persistent homology and data visualisation using Mapper. However only rudimentary methods have been used to compute a cover. In this talk, we formulate the cover computation problem as a general optimisation problem with a well-defined loss function, and use gradient descent to solve it. The resulting algorithm, ShapeDiscover, substantially improves quality of topological inference and data visualisation. We also show some preliminary applications in scRNA-seq transcriptomics and the topology of grid cells in the rats' brain. This is a joint work with Luis Scoccola and Heather Harrington.

Fri, 06 Jun 2025

12:00 - 13:00
Quillen Room

Block decompositions for p-adic groups

Constantinos Papachristoforou
(University of Sheffield)
Abstract
Driven by the Langlands program, the representation theory of reductive p-adic groups has been significantly developed during the last few decades.
I will give an overview on some aspects of the theory, with particular emphasis on decomposition of categories of smooth representations. I will also discuss passing from complex representations to other coefficient rings.
Fri, 06 Jun 2025

11:00 - 12:00
L4

Mathematical modeling of some aspects of Age-related Macular Degeneration (AMD)

Dr Luca Alasio
(INRIA Paris)
Abstract

Our visual perception of the world heavily relies on sophisticated and delicate biological mechanisms, and any disruption to these mechanisms negatively impacts our lives. Age-related macular degeneration (AMD) affects the central field of vision and has become increasingly common in our society, thereby generating a surge of academic and clinical interest. I will present some recent developments in the mathematical modeling of the retinal pigment epithelium (RPE) in the retina in the context of AMD; the RPE cell layer supports photoreceptor survival by providing nutrients and participating in the visual cycle and “cellular maintenance". Our objectives include modeling the aging and degeneration of the RPE with a mechanistic approach, as well as predicting the progression of atrophic lesions in the epithelial tissue. This is a joint work with the research team of Prof. M. Paques at Hôpital National des Quinze-Vingts.


 

Thu, 05 Jun 2025
17:00
L3

Globally valued fields, adelic curves and Siu inequality

Antoine Sedillot
(Universität Regensburg)
Abstract

In this talk, I will introduce the frameworks of globally valued fields (Ben Yaacov-Hrushovski) and adelic curves (Chen-Moriwaki). Both of these frameworks aim at understanding the arithmetic of fields sharing common features with global fields. A lot of examples fit in this scope (e.g. global fields, finitely generated extension of the prime fields, fields of meromorphic functions) and we will try to describe some of them.

Although globally valued fields and adelic curves came from different motivations and might seem quite different, they are related (and even essentially equivalent). This relation opens the door for new methods in the study of global arithmetic. As an application, we will sketch the proof of an arithmetic analogue of Siu inequality in algebraic geometry (a fundamental tool to detect the existence of global sections of line bundles in birational geometry). This is a joint work with Michał Szachniewicz.

Thu, 05 Jun 2025
16:00
Lecture Room 4

Refined conjectures of ‘Birch—Swinnerton-Dyer type’ and the theory of Euler systems

Dominik Bullach
(University College London)
Abstract

In the 1980s, Mazur and Tate proposed refinements of the Birch–Swinnerton-Dyer conjecture that also capture congruences between twists of Hasse–Weil L-series by Dirichlet characters. In this talk, I will report on new results towards these refined conjectures, obtained in joint work with Matthew Honnor. I will also outline how the results fit into a more general approach to refined conjectures on special values of L-series via an enhanced theory of Euler systems. This final part will touch upon joint work with David Burns.

Thu, 05 Jun 2025
14:00
Lecture Room 3

Solving sparse linear systems using quantum computing algorithms

Leigh Lapworth
(Rolls-Royce)
Abstract

The currently available quantum computers fall into the NISQ (Noisy Intermediate Scale Quantum) regime. These enable variational algorithms with a relatively small number of free parameters. We are now entering the FTQC (Fault Tolerant Quantum Computer)  regime where gate fidelities are high enough that error-correction schemes are effective. The UK Quantum Missions include the target for a FTQC device that can perform a million operations by 2028, and a trillion operations by 2035.

 

This talk will present the outcomes from assessments of  two quantum linear equation solvers for FTQCs– the Harrow–Hassidim–Lloyd (HHL) and the Quantum Singular Value Transform (QSVT) algorithms. These have used sample matrices from a Computational Fluid Dynamics (CFD) testcase. The quantum solvers have also been embedded with an outer non-linear solver to judge their impact on convergence. The analysis uses circuit emulation and is used to judge the FTQC requirements to deliver quantum utility.

Thu, 05 Jun 2025
13:30
L5

Seiberg-Witten theory

Harshal Kulkarni
Abstract
Seiberg-Witten theory is a powerful framework for understanding the exact non-perturbative dynamics of 4d $\mathcal{N} = 2$ supersymmetric QFTs. On the Coulomb branch of the moduli space, the low-energy physics is described by an abelian gauge theory with a holomorphic structure constrained by supersymmetry and duality. In this talk, I will explain the emergence of $PSL(2,\mathbb{Z})$ invariance in this effective field theory and how this naturally leads to a fibration of elliptic curves over the Coulomb branch. Focusing on the simplest case of $\mathcal{N} = 2$ SU(2) gauge theory without flavors, I will discuss the singularity structure of the Coulomb branch and the physical significance of these special points. I will conclude by briefly commenting on the central role that the singular structure of the moduli space plays in the classification of 4d $\mathcal{N}=2$ SCFTs.
 

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 05 Jun 2025
12:00
C6

A modeling perspective on retinal degeneration

Naoufel Cresson
(Sorbonne Université)
Abstract

This talk introduces an ongoing research project focused on building mechanistic models to study retinal degeneration, with a particular emphasis on the geometric aspects of the disease progression.

As we develop a computational model for retinal degeneration, we will explore how cellular materials behave and how wound-healing mechanisms influence disease progression. Finally, we’ll detail the numerical methods used to simulate these processes and explain how we work with medical data.

Ongoing research in collaboration with the group of M. Paques (Paris Eye Imaging - Quinze Vingts National Ophthalmology Hospital and Vision Institute).

Thu, 05 Jun 2025

12:00 - 12:30
L4

Reducing acquisition time and radiation damage: data-driven subsampling for spectromicroscopy

Lorenzo Lazzarino
(Mathematical Institute (University of Oxford))
Abstract

Spectro-microscopy is an experimental technique with great potential to science challenges such as the observation of changes over time in energy materials or environmental samples and investigations of the chemical state in biological samples. However, its application is often limited by factors like long acquisition times and radiation damage. We present two measurement strategies that significantly reduce experiment times and applied radiation doses. These strategies involve acquiring only a small subset of all possible measurements and then completing the full data matrix from the sampled measurements. The methods are data-driven, utilizing spectral and spatial importance subsampling distributions to select the most informative measurements. Specifically, we use data-driven leverage scores and adaptive randomized pivoting techniques. We explore raster importance sampling combined with the LoopASD completion algorithm, as well as CUR-based sampling where the CUR approximation also serves as the completion method. Additionally, we propose ideas to make the CUR-based approach adaptive. As a result, capturing as little as 4–6% of the measurements is sufficient to recover the same information as a conventional full scan.

Thu, 05 Jun 2025

12:00 - 13:00
L3

Constitutive Modeling of the Microstructure of Arterial Walls Including Collagen Cross-Linking

Gerhard Holzapfel
(TU Graz)
Further Information

Extended Bio
Gerhard A. Holzapfel is a world-leading figure in biomechanics, currently serving as Professor and Head of the Institute of Biomechanics at Graz University of Technology (TUG), Austria. He also holds appointments as Adjunct Professor at the Norwegian University of Science and Technology (NTNU) in Trondheim and Visiting Professor at the University of Glasgow. From 2004 to 2013, he was Professor of Biomechanics at the Royal Institute of Technology (KTH) in Stockholm.

Following a PhD in Mechanical Engineering from Graz, Professor Holzapfel was awarded an Erwin Schrödinger Scholarship, enabling him to conduct research at Stanford University. He achieved his Habilitation at TU Vienna in 1996 and was the recipient of Austria’s prestigious START Award in 1997. Over subsequent decades, he has led pioneering work in computational biomechanics, including as Head of the Computational Biomechanics research group at TUG (1998–2004).

Professor Holzapfel has received numerous accolades, including the Erwin Schrödinger Prize of the Austrian Academy of Sciences (2011), listings among “The World’s Most Influential Scientific Minds” (Thomson Reuters, 2014), the William Prager Medal and Warner T. Koiter Medal (2021), an honorary doctorate from École des Mines de Saint-Étienne (2024), and election to the U.S. National Academy of Engineering (2025). In 2024, he was awarded a prestigious Synergy Grant from the European Research Council (ERC).

His research spans experimental and computational biomechanics and mechanobiology, with a particular focus on soft biological tissues and the cardiovascular system in both health and disease. His expertise includes nonlinear continuum mechanics, constitutive modelling, growth and remodeling, imaging and image-based modeling, and the mechanics of therapeutic interventions such as angioplasty and stenting.

Professor Holzapfel is the author of the widely adopted graduate textbook Nonlinear Solid Mechanics (Wiley), has co-edited seven additional books, and contributed chapters to over 30 volumes. He has published more than 300 peer-reviewed journal articles. He is also the co-founder and co-editor of the journal Biomechanics and Modeling in Mechanobiology (Springer). His work has been funded by numerous national and international agencies, including the Austrian Science Fund, NIH, the European Commission, and industry collaborators.

Abstract

Nowadays, the 3D ultrastructure of a fibrous tissue can be reconstructed in order to visualize the complex nanoscale arrangement of collagen fibrils including neighboring proteoglycans even in the stretched loaded state [1]. In particular, experimental data of collagen fibers in human artery layers have shown that the f ibers are not symmetrically dispersed [2]. In addition, it is known that collagen f ibers are cross-linked and the density of cross-links in arterial tissues has a stiffening effect on the associated mechanical response. A first attempt to characterize this effect on the elastic response is presented and the influence of the cross-link density on the mechanical behavior in uniaxial tension is shown [3]. A recently developed extension of the model that accounts for dispersed fibers connected by randomly distributed cross-links is outlined [4]. A simple shear test focusing on the sign of the normal stress perpendicular to the shear planes (Poynting effect) is analyzed. In [5] it was experimentally observed that, in contrast to rubber, semi-flexible biopolymer gels show a tendency to approach the top and bottom faces under simple shear. This so-called negative Poynting effect and its connection with the cross-links as well as the fiber and crosslink dispersion is also examined. 

References 

[1]A. Pukaluk et al.: An ultrastructural 3D reconstruction method for observing the arrangement of collagen fibrils and proteoglycans in the human aortic wall under mechanical load. Acta Biomaterialia, 141:300-314, 2022. 

 [2] G.A. Holzapfel et al.: Modelling non-symmetric collagen fibre dispersion in arterial walls. Journal of the Royal Society Interface, 12:20150188, 2015. 

 [3] G.A. Holzapfel and R.W. Ogden: An arterial constitutive model accounting for collagen content and cross-linking. Journal of the Mechanics and Physics of Solids, 136:103682, 2020. 

 [4] S. Teichtmeister and G.A. Holzapfel: A constitutive model for fibrous tissues with cross-linked collagen fibers including dispersion – with an analysis of the Poynting effect. Journal of the Mechanics and Physics of Solids, 164:104911, 2022. 

[5] P.A. Janmey et al.: Negative normal stress in semiflexible biopolymer gels. Nature Materials, 6:48–51, 2007.

 

Thu, 05 Jun 2025

11:00 - 12:00
C5

Relativistically invariant wave equations in the realist theory

Tristram de Piro
Abstract
Boris Zilber showed that you can build a logical structure around the relativistic Klein-Gordon and Dirac equations from quantum field theory. I will present the parallel realist theory, favoured by Einstein, to the Copenhagen interpretation. Starting from the requirements of Rutherford's principle for atomic systems and Maxwell's equations, I will show that there exist unique relativistically invariant wave equations for charge and current, with non-vacuum solutions, which predict the proportionality in the Balmer series.
Wed, 04 Jun 2025
17:00
Lecture Theatre 1, Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, OX2 6GG

Responsible modelling and the ethics of mathematics for decision support - Erica Thompson

Erica Thompson
(University College London)
Further Information

Mathematical models are used to inform decisions across many sectors including climate change, finance, and epidemics. But models are not perfect representations of the real world – they are partial, uncertain and often biased.  What, then, does responsible modelling look like?  And how can we apply this ethical framework to new AI modelling methods?

Erica Thompson is Associate Professor of Modelling for Decision Making at UCL’s Department of Science, Technology, Engineering and Public Policy (STEaPP), and the author of 'Escape From Model Land' (2022).

Please email @email to register to attend in person.

The lecture will be broadcast on the Oxford Mathematics YouTube Channel on Wednesday 25 June at 5-6pm and any time after (no need to register for the online version).

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.