Date
Mon, 09 Jun 2025
16:30
Location
L4
Speaker
Amandine Aftalion
Organisation
CNRS; laboratoire de mathématiques d'Orsay, Univ Paris-Saclay

We are going to study the Ginzburg-Landau energy for two specific geometries, related to the very experiments on fermionic condensates: annuli and strips 

The specific geometry of a strip provides connections between solitons and vortices, called solitonic vortices, which are vortices with a solitonic behaviour in the infinite direction of the strip. Therefore, they are very different from classical vortices which have an algebraic decay at infinity. We show that there exist stationary solutions to the Gross-Pitaevskii equation with k vortices on a transverse line, which bifurcate from the soliton solution as the width of the strip is increased. This is motivated by recent experiments on the instability of solitons by imposing a phase shift in an elongated condensate for bosonic or fermionic atoms.

For annuli, we prescribe a very large degree on the outer boundary and find that either there is a transition from a giant vortex to vortices also in the bulk but tending to the outer boundary.

This is joint work with Ph. Gravejat and E.Sandier for solitonice vortices and Remy Rodiac for annuli.
 

Last updated on 19 Mar 2025, 9:14am. Please contact us with feedback and comments about this page.