Mon, 15 May 2017

15:45 - 16:45
L6

Fully extended twisted field theories

Claudia Scheimbauer
Abstract


After giving an introduction to functorial field theories I will explain a natural generalization thereof, called "twisted" field theories by Stolz-Teichner. The definition uses the notion of lax or oplax natural transformations of strong functors of higher categories for which I will sketch a framework. I will discuss the fully extended case, which gives a comparison to Freed-Teleman's "relative" boundary field theories. Finally, I will explain some examples, one of which explicitly arises from factorization homology and whose target is the higher Morita category of E_n-algebras, bimodules, bimodules of bimodules etc.

Mon, 15 May 2017

15:45 - 16:45
L3

Well-posedness by noise for scalar conservation laws

BENJAMIN GESS
(Max Plank Institute and Unviersidad Bielefeld)
Abstract

In certain cases of (linear) partial differential equations random perturbations have been observed to cause regularizing effects, in some cases even producing the uniqueness of solutions. In view of the long-standing open problems of uniqueness of solutions for certain PDE arising in fluid dynamics such results are of particular interest. In this talk we will extend some known results concerning the well-posedness by noise for linear transport equations to the nonlinear case.

Mon, 15 May 2017

14:15 - 15:15
L3

Renormalisation of SPDE's

ILYA CHEVYREV
(University of Oxford)
Abstract

Recent work in regularity structures has provided a robust solution theory for a wide class of singular SPDEs. While much progress has been made on understanding the analytic and algebraic aspects of renormalisation of the driving signal, the action of the renormalisation group on the equation still needed to be performed by hand. In this talk, we aim to give a systematic description of the renormalisation procedure directly on the level of the PDE, which allows for explicit computation of the form of the renormalised equation. Joint work with Yvain Bruned, Ajay Chandra, and Martin Hairer.

 

Mon, 15 May 2017

14:15 - 15:15
L4

Higgs bundles, Lagrangians and mirror symmetry.

Lucas Branco
(Oxford)
Abstract

The moduli space M(G) of Higgs bundles for a complex reductive group G on a compact Riemann surface carries a natural hyperkahler structure and it comes equipped with an algebraically completely integrable system through a flat projective morphism called the Hitchin map. Motivated by mirror symmetry, I will discuss certain complex Lagrangians (BAA-branes) in M(G) coming from real forms of G and give a proposal for the mirror (BBB-brane) in the moduli space of Higgs bundles for the Langlands dual group of G.  In this talk, I will focus on the real groups SU^*(2m), SO^*(4m) and Sp(m,m). The image under the Hitchin map of Higgs bundles for these groups is completely contained in the discriminant locus of the base and our analysis is carried out by describing the whole
(singular) fibres they intersect. These turn out to be certain subvarieties of the moduli space of rank 1 torsion-free sheaves on a non-reduced curve. If time permits we will also discuss another class of complex Lagrangians in M(G) which can be constructed from symplectic representations of G.

 

Mon, 15 May 2017
12:45
L3

Infinitesimal moduli of heterotic G_2 systems

Xenia de la Ossa
(Oxford)
Abstract

A heterotic $G_2$ system is a quadruple $([Y,\varphi], [V, A], [TY,\theta], H)$ where $Y$ is a seven dimensional manifold with an integrable <br /> $G_2$ structure $\varphi$, $V$ is a bundle on $Y$ with an instanton connection $A$, $TY$ is the tangent bundle with an instanton connection $\theta$ and $H$ is a three form on $Y$ determined uniquely by the $G_2$ structure on $Y$. Further, H  is constrained so that it satisfies a condition that involves the Chern-Simons forms of $A$ and $\theta$, thus mixing the geometry of $Y$ with that of the bundles (this is the so called anomaly cancelation condition).  In this talk I will describe the tangent space of the moduli space of these systems. We first prove that a heterotic system is equivalent to an exterior covariant derivative $\cal D$ on the bundle ${\cal Q} = T^*Y\oplus {\rm End}(V)\oplus {\rm End}(TY)$ which satisfies $\check{\cal D}^2 = 0$ for some appropriately defined projection of the operator $\cal D$.  Remarkably, this equivalence implies the (Bianchi identity of) the anomaly cancelation condition. We show that the infinitesimal moduli space is given by the cohomology group $H^1_{\check{\cal D}}(Y, {\cal Q})$ and therefore it is finite dimensional.   Our analysis leads to results that are of relevance to all orders in $\alpha’$.  Time permitting, I will comment on work in progress about the finite deformations of heterotic $G_2$ systems and the relation to differential graded Lie algebras.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fri, 12 May 2017
16:00
L1

Chaos and wild chaos in Lorenz-type systems

Hinke M Osinga
(University of Auckland, NZ)
Abstract

Hinke Osinga, University of Auckland
joint work with: Bernd Krauskopf and Stefanie Hittmeyer (University of Auckland)

Dynamical systems of Lorenz type are similar to the famous Lorenz system of just three ordinary differential equations in a well-defined geometric sense. The behaviour of the Lorenz system is organised by a chaotic attractor, known as the butterfly attractor. Under certain conditions, the dynamics is such that a dimension reduction can be applied, which relates the behaviour to that of a one-dimensional non-invertible map. A lot of research has focussed on understanding the dynamics of this one-dimensional map. The study of what this means for the full three-dimensional system has only recently become possible through the use of advanced numerical methods based on the continuation of two-point boundary value problems. Did you know that the chaotic dynamics is organised by a space-filling pancake? We show how similar techniques can help to understand the dynamics of higher-dimensional Lorenz-type systems. Using a similar dimension-reduction technique, a two-dimensional non-invertible map describes the behaviour of five or more ordinary differential equations. Here, a new type of chaotic dynamics is possible, called wild chaos. 


 

 

Fri, 12 May 2017

10:00 - 11:00
N3.12

Controlling faithful prime ideals in Iwasawa algebras.

Adam Jones
(University of Oxford)
Abstract

 

For a prime number p, we will consider completed group algebras, or Iwasawa algebras, of the form kG, for G a complete p-valued group of finite rank, k a field of characteristic p. Classifying the ideal structure of Iwasawa algebras has been an ongoing project within non-commutative algebra and representation theory, and we will discuss ideas related to this topic based on previous work and try to extend it. An important concept in studying ideals of group algebras is the notion of controlling ideals, where we say a closed subgroup H of G controls a right ideal I of kG if I is generated by a subset of kH. It was proved by Konstantin Ardakov in 2012 that for G nilpotent, every faithful prime ideal of kG is controlled by the centre of G, and it follows that the prime spectrum of kG can be realised as the disjoint union of commutative strata. I am hoping to extend this to a more general case, perhaps to when G is solvable. A key step in the proof is to consider a faithful prime ideal P in kG, and an automorphism of G, trivial mod centre, that fixes P. By considering the Mahler expansion of the automorphism, and approximating the coefficients, we can examine sequences of bounded k-linear functions of kG, and study their convergence. If we find that they converge to an appropriate quantized divided power, we can find proper open subgroups of G that control P. I have extended this notion to larger classes of automorphisms, not necessarily trivial mod centre, using which this proof can be replicated, and in some cases extended to when G is abelian-by-procyclic. I will give some examples, for G with small rank, for which these ideas yield results.

Thu, 11 May 2017
17:30
L6

Ample geometries of finite Morley rank

Katrin Tent
(Münster)
Abstract

I will explain the model theoretic notion of ampleness
and present the geometric context of recent constructions.

Thu, 11 May 2017

17:00 - 18:15
L1

The Sound of Symmetry and the Symmetry of Sound - Marcus du Sautoy

Marcus du Sautoy
(University of Oxford)
Abstract

Symmetry has played a critical role both for composers and in the creation of musical instruments. From Bach’s Goldberg Variations to Schoenberg’s Twelve-tone rows, composers have exploited symmetry to create variations on a theme. But symmetry is also embedded in the very way instruments make sound. The lecture will culminate in a reconstruction of nineteenth-century scientist Ernst Chladni's exhibition that famously toured the courts of Europe to reveal extraordinary symmetrical shapes in the vibrations of a metal plate.

The lecture will be preceded by a demonstration of the Chladni plates with the audience encouraged to participate. Each of the 16 plates will have their own dials to explore the changing input and can accommodate 16 players at a time. Participants will be able to explore how these shapes might fit together into interesting tessellations of the plane. The ultimate idea is to create an aural dynamic version of the walls in the Alhambra.

The lecture will start at 5pm, but the demonstration will be available from 2.30pm.

Please email @email to register

 

 

 

Thu, 11 May 2017
16:00
L6

Lifting theorems in Galois cohomology

Mathieu Florence
(Université Paris 6)
Abstract

The aim of this talk is to explain how to axiomatize Hilbert's Theorem 90, in the setting of (the cohomology with finite coefficients of) profinite groups. I shall first explain the general framework.  It includes, in particular, the use of divided power modules over Witt vectors; a process which appears to be of independent interest in the theory of modular representations. I shall then give several applications to Galois cohomology, notably to the problem of lifting mod p Galois representations (or more accurately: torsors under these) modulo higher powers of p. I'll also explain the connection with the Bloch-Kato conjecture in Galois cohomology, proved by Rost, Suslin and Voevodsky. This is joint work in progress with Charles De Clercq.

Thu, 11 May 2017

16:00 - 17:00
L3

On Human Consciousness

Peter Grindrod
(University of Oxford)
Abstract

What can maths tell us about this topic? Do mathematicians even have a seat at the table, and should we? What do we know about directed networks and dynamical systems that can contribute to this?

We consider the implications of the mathematical modelling and analysis of neurone-to-neurone dynamical complex networks. We explain how the dynamical behaviour of relatively small scale strongly connected networks lead naturally to non-binary information processing and thus to multiple hypothesis decision making, even at the very lowest level of the brain’s architecture. This all looks a like a a loose  coupled array of  k-dimensional clocks. There are lots of challenges for maths here. We build on these ideas to address the "hard problem" of consciousness - which other disciplines say is beyond any mathematical explanation for ever! 

We discuss how a proposed “dual hierarchy model”, made up from both externally perceived, physical, elements of increasing complexity, and internally experienced, mental elements (which we argue are equivalent to feelings), may support a leaning and evolving consciousness. We introduce the idea that a human brain ought to be able to re-conjure subjective mental feelings at will. An immediate consequence of this model  is that finite human brains must always be learning and forgetting and that any possible subjective internal feeling that might be fully idealised only with a countable infinity of facets, could never be learned completely a priori by zombies or automata: it may be experienced more and more fully by an evolving human brain (yet never in totality, not even in a lifetime). 

Thu, 11 May 2017

16:00 - 17:30
L4

Stability of Radner Equilibria with Respect to Small Frictions

Martin Herdegen
(Warwick)
Abstract


We study risk-sharing equilibria with trading subject to small proportional transaction costs. We show that the frictionless equilibrium prices also form an "asymptotic equilibrium" in the small-cost limit. To wit, there exist asymptotically optimal policies for all agents and a split of the trading cost according to their risk aversions for which the frictionless equilibrium prices still clear the market. Starting from a frictionless equilibrium, this allows to study the interplay of volatility, liquidity, and trading volume.
(This is joint work with Johannes Muhle-Karbe, University of Michigan.)
 

Thu, 11 May 2017

14:00 - 15:00
L4

Regularized Nonlinear Acceleration

Alexandre d’Aspremont
Abstract


We describe a convergence acceleration technique for generic optimization problems. Our scheme computes estimates of the optimum from a nonlinear average of the iterates produced by any optimization method. The weights in this average are computed via a simple linear system, whose solution can be updated online. This acceleration scheme runs in parallel to the base algorithm, providing improved estimates of the solution on the fly, while the original optimization method is running. Numerical experiments are detailed on classical classification problems.
 

Wed, 10 May 2017

11:30 - 12:30
N3.12

Insertion Algorithms and Littlewood-Richardson Rules

Adam Keilthy
(University of Oxford)
Abstract

The Robin-Schensted-Knuth insertion algorithm provides a bijection between non-negative integer matrices and pairs of semistandard Young tableau. However, by relaxing the conditions on the correspondence, it allows us to define the Poirer-Reutenauer bialgebra, which exactly describes the algebra of symmetric functions viewed as generated by the Schur polynomials. This gives an interesting combinatorial decomposition of symmetric products of Schur polynomials, called a Littlewood Richardson rule, which we will discuss. We will then power through as many generalisations as I have time for: Hecke insertion and stable Grothendieck polynomials, shifted insertion and Schur P-functions, and shifted Hecke insertion and weak shifted stable Grothendieck polynomials

Tue, 09 May 2017

17:00 - 18:15
L1

The Butterfly Effect: What Does It Really Signify? - Tim Palmer

Tim Palmer
(University of Oxford)
Abstract

Meteorologist Ed Lorenz was one of the founding fathers of chaos theory. In 1963, he showed with just three simple equations that the world around us could be both completely deterministic and yet practically unpredictable. More than this, Lorenz discovered that this behaviour arose from a beautiful fractal geometric structure residing in the so-called state space of these equations. In the 1990s, Lorenz’s work was popularised by science writer James Gleick. In his book Gleick used the phrase “The Butterfly Effect” to describe the unpredictability of Lorenz’s equations. The notion that the flap of a butterfly’s wings could change the course of future weather was an idea that Lorenz himself used in his outreach talks.

However, Lorenz used it to describe something much more radical than can be found in his three simple equations. Lorenz didn’t know whether the Butterfly Effect, as he understood it, was true or not. In fact, it lies at the heart of one of the Clay Mathematics Millennium Prize problems, and is still an open problem today. In this talk I will discuss Lorenz the man, his background and his work in the 1950s and 1960s, and will compare and contrast the meaning of the “Butterfly Effect" as most people understand it today, and as Lorenz himself intended it to mean. The implications of the “Real Butterfly Effect" for understanding the predictability of nonlinear multi-scale systems (such as weather and climate) will be discussed. No technical knowledge of the field is assumed. 

Please email @email to register

Further reading:
T.N.Palmer, A. Döring and G. Seregin (2014): The Real Butterfly Effect. Nonlinearity, 27, R123-R141.

Tue, 09 May 2017

15:45 - 16:45
L4

Limits of Yang-Mills alpha-connections

Casey Lynn Kelleher
(UC Irvine)
Abstract
In the spirit of recent work of Lamm, Malchiodi and Micallef in the setting of harmonic maps, we identify Yang-Mills connections obtained by approximations with respect to the Yang-Mills alpha-energy. More specifically, we show that for the SU(2) Hopf fibration over the four sphere, for sufficiently small alpha values the rotation invariant ADHM connection is the unique alpha-critical point which has Yang-Mills alpha-energy lower than a specific threshold.
Tue, 09 May 2017
14:30
L3

Ill-conditioning and numerical stability in radial basis functions (RBFs) using frame theory

Cécile Piret
(Michigan Technological University)
Abstract

We analyse the numerical approximation of functions using radial basis functions in the context of frames. Frames generalize the notion of a basis by allowing redundancy, while being restricted by a so-called frame condition. The theory of numerical frame approximations allows the study of ill-conditioning, inherently due to their redundancy, and suggests discretization techniques that still offer numerical stability to machine precision. We apply the theory to radial basis functions.

 

Tue, 09 May 2017
14:00
L3

Computation of the joint spectral radius by optimization techniques

Amirali Ahmadi
(Princeton University)
Abstract


The joint spectral radius (JSR) of a set of matrices characterizes the maximum growth rate that can be achieved by multiplying them in arbitrary order. This concept, which essentially generalizes the notion of the "largest eigenvalue" from one matrix to many, was introduced by Rota and Strang in the early 60s and has since emerged in many areas of application such as stability of switched linear systems, computation of the capacity of codes, convergence of consensus algorithms, tracability of graphs, and many others. The JSR is a very difficult quantity to compute even for a pair of matrices. In this talk, we present optimization-based algorithms (e.g., via semidefinite programming or dynamic programming) that can either compute the JSR exactly in special cases or approximate it with arbitrary prescribed accuracy in the general case.

Based on joint work (in different subsets) with Raphael Jungers, Pablo Parrilo, and Mardavij Roozbehani.
 

Tue, 09 May 2017

12:00 - 13:15
L4

Duality of Wilson loop form factors

Emery Sokatchev
(Cern)
Abstract

We find a new duality  for form factors of lightlike Wilson loops
in planar N=4 super-Yang-Mills theory. The duality maps a form factor
involving a lightlike polygonal super-Wilson loop together with external
on-shell states, to the same type of object  but with the edges of the
Wilson loop and the external states swapping roles.  This relation can
essentially be seen graphically in Lorentz harmonic chiral (LHC) superspace
where it is equivalent to planar graph duality.