11:30
11:30
17:00
Symplectic Alternating Algebras
Abstract
Let F be a field. A symplectic alternating algebra over F
consists of a symplectic vector space V over F with a non-degenerate
alternating form that is also equipped with a binary alternating
product · such that the law (u·v, w)=(v·w, u) holds. These algebraic
structures have arisen from the study of 2-Engel groups but seem also
to be of interest in their own right with many beautiful properties.
We will give an overview with a focus on some recent work on the
structure of nilpotent symplectic alternating algebras.
Noncommutative algebraic geometry of isolated hypersurface singularities II
Abstract
The concept of a matrix factorization was originally introduced by Eisenbud to study syzygies over local rings of singular hypersurfaces. More recently, interactions with mathematical physics, where matrix factorizations appear in quantum field theory, have provided various new insights. I will explain how matrix factorizations can be studied in the context of noncommutative algebraic geometry based on differential graded categories. We will see the relevance of the noncommutative analogue of de Rham cohomology in terms of classical singularity theory. Finally, I will outline how the Kapustin-Li formula for the noncommutative Serre duality pairing (originally computed via path integral methods) can be mathematically explained using a combination of homological perturbation theory and local duality.
Partly based on joint work with Daniel Murfet.
Alternating minimal energy methods for linear systems in higher dimensions.
Abstract
We propose a new algorithm for the approximate solution of large-scale high-dimensional tensor-structured linear systems. It can be applied to high-dimensional differential equations, which allow a low-parametric approximation of the multilevel matrix, right-hand side and solution in a tensor product format. We apply standard one-site tensor optimisation algorithm (ALS), but expand the tensor manifolds using the classical iterative schemes (e.g. steepest descent). We obtain the rank--adaptive algorithm with the theoretical convergence estimate not worse than the one of the steepest descent, and fast practical convergence, comparable or even better than the convergence of more expensive two-site optimisation algorithm (DMRG).
The method is successfully applied for a high--dimensional problem of quantum chemistry, namely the NMR simulation of a large peptide.
This is a joint work with S.Dolgov (Max-Planck Institute, Leipzig, Germany), supported by RFBR and EPSRC grants.
Keywords: high--dimensional problems, tensor train format, ALS, DMRG, steepest descent, convergence rate, superfast algorithms, NMR.
Noncommutative algebraic geometry of isolated hypersurface singularities I
Abstract
The concept of a matrix factorization was originally introduced by Eisenbud to study syzygies over local rings of singular hypersurfaces. More recently, interactions with mathematical physics, where matrix factorizations appear in quantum field theory, have provided various new insights. I will explain how matrix factorizations can be studied in the context of noncommutative algebraic geometry based on differential graded categories. We will see the relevance of the noncommutative analogue of de Rham cohomology in terms of classical singularity theory. Finally, I will outline how the Kapustin-Li formula for the noncommutative Serre duality pairing (originally computed via path integral methods) can be mathematically explained using a combination of homological perturbation theory and local duality.
Partly based on joint work with Daniel Murfet.
Existence and numerical analysis for incompressible chemically reacting fluids with $p(c(x))$-$\Delta$ structure
Abstract
We study a system of partial differential equations describing a steady flow of an incompressible generalized Newtonian fluid, wherein the Cauchy stress depends on concentration. Namely, we consider a coupled system of the generalized Navier-Stokes equations (viscosity of power-law type with concentration dependent power index) and convection-diffusion equation with non-linear diffusivity. We focus on the existence analysis of a weak solution for certain class of models by using a generalization of the monotone operator theory which fits into the framework of generalized Sobolev spaces with variable exponent (class of Sobolev-Orlicz spaces). Such results is then adapted for a suitable FEM approximation, for which the main tool of proof is a generalization of the Lipschitz approximation method.
Singularly perturbed hyperbolic systems
Abstract
In the first JAM seminar of 2013/2014, I will discuss the topic of singular perturbed hyperbolic systems of PDE arising in physical phenomena, particularly the St Venant equations of shallow water theory. Using a mixture of analytical and numerical techniques, I will demonstrate the dangers of approximating the dynamics of a system by the equations obtained upon taking a singular limit $\epsilon\rightarrow 0$ and furthermore how the dynamics of the system change when the parameter $\epsilon$ is taken to be small but finite. Problems of this type are ubiquitous in the physical sciences, and I intend to motivate another example arising in elastoplasticity, the subject of my DPhil study.
\\
\\
Note: This seminar is not intended for faculty members, and is available only to current undergraduate and graduate students.
11:00
Finding Galois Representations
Abstract
It is well known that one can attach Galois representations to certain modular forms, it is natural to ask how one might generalise this to produce more Galois representations. One such approach, due to Gross, defines objects called algebraic modular forms on certain types of reductive groups and then conjectures the existence of Galois representations attached to them. In this talk I will outline how for a particular choice of reductive group the conjectured Galois representations exist and are the classical modular Galois representations, thus providing some evidence that this is a good generalisation to consider.
Local minimization, Variational evolution and Gamma-convergence
Abstract
The description of the behaviour of local minima or evolution problems for families of energies cannot in general be deduced from their Gamma-limit, which is a concept designed to treat static global minimum problems. Nevertheless this can be taken as a starting point. Various issues that have been addressed are:
Find criteria that ensure the convergence of local minimizers and critical points. In case this does not occur then modify the Gamma-limit in order to match this requirement. We note that in this way we `correct' some limit theories, finding (or `validating') other ones present in the literature;
Modify the concept of local minimizer, so that it may be more `compatible' with the process of Gamma-limit;
Treat evolution problems for energies with many local minima obtained by a time-discrete scheme introducing the notion of `minimizing movements along a sequence of functionals'. In this case the minimizing movement of the Gamma-limit can always be obtained by a choice of the space- and time-scale, but more interesting behaviors can be obtained at a critical ratio between them. In many cases a `critical scale' can be computed and an effective motion, from which all other minimizing movements are obtained by scaling.
Relate minimizing movements to general variational evolution results, in particular recent theories of quasistatic motion and gradient flow in metric spaces.
I will illustrate some of these points.
Learning an evolving system using Rough Paths Theory
Abstract
''Regression analysis aims to use observational data from multiple observations to develop a functional relationship relating explanatory variables to response variables, which is important for much of modern statistics, and econometrics, and also the field of machine learning. In this paper, we consider the special case where the explanatory variable is a stream of information, and the response is also potentially a stream. We provide an approach based on identifying carefully chosen features of the stream which allows linear regression to be used to characterise the functional relationship between explanatory variables and the conditional distribution of the response; the methods used to develop and justify this approach, such as the signature of a stream and the shue product of tensors, are standard tools in the theory of rough paths and seem appropriate in this context of regression as well and provide a surprisingly unified and non-parametric approach.''
Asymptotic independence of three statistics of the maximal increments of random walks and Levy processes
Abstract
14:00
Integrability and instability in AdS/CFT
Abstract
Closed End Bond Funds
Abstract
The performance of the shares of a closed end bond fund is based on the returns of an underlying portfolio of bonds. The returns on closed end bond funds are typically higher than those of comparable open ended bond funds and this result is attributed to the use of leverage by closed end bond funds. This talk develops a simple model to assess the impact of leverage on the expected return and riskiness of a closed end bond fund. We illustrate the model with some examples
Periodicity of finite-dimensional algebras
Abstract
Let $A$ be a finite-dimensional $K$-algebra over an algebraically closed field $K$. Denote by $\Omega_A$ the syzygy operator on the category $\mod A$ of finite-dimensional right $A$-modules, which assigns to a module $M$ in $\mod A$ the kernel $\Omega_A(M)$ of a minimal projective cover $P_A(M) \to M$ of $M$ in $\mod A$. A module $M$ in $\mod A$ is said to be periodic if $\Omega_A^n(M) \cong M$ for some $n \geq 1$. Then $A$ is said to be a periodic algebra if $A$ is periodic in the module category $\mod A^e$ of the enveloping algebra $A^e = A^{\op} \otimes_K A$. The periodic algebras $A$ are self-injective and their module categories $\mod A$ are periodic (all modules in $\mod A$ without projective direct summands are periodic). The periodicity of an algebra $A$ is related with periodicity of its Hochschild cohomology algebra $HH^{*}(A)$ and is invariant under equivalences of the derived categories $D^b(\mod A)$ of bounded complexes over $\mod A$. One of the exciting open problems in the representation theory of self-injective algebras is to determine the Morita equivalence classes of periodic algebras.
We will present the current stage of the solution of this problem and exhibit prominent classes of periodic algebras.
On symmetric quotients of symmetric algebras
Abstract
We investigate symmetric quotient algebras of symmetric algebras,
with an emphasis on finite group algebras over a complete discrete
valuation ring R with residue field of positive characteristic p. Using elementary methods, we show that if an
ordinary irreducible character of a finite group gives
rise to a symmetric quotient over R which is not a matrix algebra,
then the decomposition numbers of the row labelled by the character are
all divisible by p. In a different direction, we show that if is P is a finite
p-group with a cyclic normal subgroup of index p, then every ordinary irreducible character of P gives rise to a
symmetric quotient of RP. This is joint work with Shigeo Koshitani and Markus Linckelmann.
Exact representations of Susceptible-Infectious-Removed (SIR) epidemic dynamics on networks
Abstract
The majority of epidemic models fall into two categories: 1) deterministic models represented by differential equations and 2) stochastic models which can be evaluated by simulation. In this presentation I will discuss the precise connection between these models. Until recently, exact correspondence was only established in situations exhibiting large degrees of symmetry or for infinite populations.
I will consider SIR dynamics on finite static contact networks. I will give an overview of two provably exact deterministic representations of the underlying stochastic model for tree-like networks. These are the message passing description of Karrer and Newman and my pair-based moment closure representation. I will discuss relationship between the two representations and the relative merits of both.
Affine cellularity of Khovanov-Lauda-Rouquier algebras in finite type A
Abstract
We explain how Khovanov-Lauda-Rouquier algebras in finite type A are affine cellular in the sense of Koenig and Xi. In particular this reproves finiteness of their global dimension. This is joint work with Alexander Kleshchev and Joseph Loubert.
Examples of support varieties for Hopf algebras with noncommutative tensor products
Abstract
This talk is about some recent joint work with Sarah Witherspoon. The representations of some finite dimensional Hopf algebras have curious behaviour: Nonprojective modules may have projective tensor powers, and the variety of a tensor product of modules may not be contained in the intersection of their varieties. I shall describe a family of examples of such Hopf algebras and their modules, and the classification of left, right, and two-sided ideals in their stable module categories.
On a question of Abraham Robinson's
Abstract
Coxeter groups, path algebras and preprojective algebras
Abstract
To a finite connected acyclic quiver Q there is associated a path algebra kQ, for an algebraically closed field k, a Coxeter group W and a preprojective algebra. We discuss a bijection between elements of the Coxeter group W and the cofinite quotient closed subcategories of mod kQ, obtained by using the preprojective algebra. This is taken from a paper with Oppermann and Thomas. We also include a related result by Mizuno in the case when Q is Dynkin.