Parallelogram Law for Isometries of CAT(0)-spaces
Abstract
In euclidean space there is a well-known parallelogram law relating the
length of vectors a, b, a+b and a-b. In the talk I give a similar formula
for translation lengths of isometries of CAT(0)-spaces. Given an action of
the automorphism group of a free product on a CAT(0)-space, I show that
certain elements can only act by zero translation length. In comparison to
other well-known actions this leads to restrictions about homomorphisms of
these groups to other groups, e.g. mapping class groups.
Things I haven't managed to do
Abstract
This talk will summarize some of the problems and conjectures that I haven't managed to solve (although I have tried to) while spending my three years in this job. It will cover the areas of group theory, representation theory, both of general finite groups and of symmetric groups, and fusion systems.
17:00
The Fukaya category of the once-punctured torus
Abstract
In joint work with Tim Perutz, we give a complete characterization of the Fukaya category of the punctured torus, denoted by $Fuk(T_0)$. This, in particular, means that one can write down an explicit minimal model for $Fuk(T_0)$ in the form of an A-infinity algebra, denoted by A, and classify A-infinity structures on the relevant algebra. A result that we will discuss is that no associative algebra is quasi-equivalent to the model A of the Fukaya category of the punctured torus, i.e., A is non-formal. $Fuk(T_0)$ will be connected to many topics of interest: 1) It is the boundary category that we associate to a 3-manifold with torus boundary in our extension of Heegaard Floer theory to manifolds with boundary, 2) It is quasi-equivalent to the category of perfect complexes on an irreducible rational curve with a double point, an instance of homological mirror symmetry.
15:00
"On the Hochschild cohomology of blocks of finite group algebras".
An introduction to integer factorization
Abstract
(Note change in time and location)
The purpose of this talk is to give an introduction to the theory and
practice of integer factorization. More precisely, I plan to talk about the
p-1 method, the elliptic curve method, the quadratic sieve, and if time
permits the number field sieve.
13:15
Hydrodynamics and elastodynamics of swimming bacteria
Abstract
Bacteria are ubiquitous on Earth and perform many vital roles in addition to being responsible for a variety of diseases. Locomotion allows the bacterium to explore the environment to find nutrient-rich locations and is also crucial in the formation of large colonies, known as biofilms, on solid surfaces immersed in the fluid. Many bacteria swim by turning corkscrew-shaped flagella. This can be studied computationally by considering hydrodynamic forces acting on the bacterium as the flagellum rotates. Using a boundary element method to solve the Stokes flow equations, it is found that details of the shape of the cell and flagellum affect both swimming efficiency and attraction of the swimmer towards flat no-slip surfaces. For example, simulations show that relatively small changes in cell elongation or flagellum length could make the difference between an affinity for swimming near surfaces and a repulsion. A new model is introduced for considering elastic behaviour in the bacterial hook that links the flagellum to the motor in the cell body. This model, based on Kirchhoff rod theory, predicts upper and lower bounds on the hook stiffness for effective swimming.
12:00
Form factors in N=4 SYM
Abstract
There have been significant progress in the calculation of scattering amplitudes in N=4 SYM. In this talk I will consider `form factors', which are defined not only with on-shell asymptotic states but also with one off-shell operator inserted. Such quantities are in some sense the hybrid of on-shell quantities (such
as scattering amplitudes) and off-shell quantities (such as correlation functions). We will see that form factors inherit many nice properties of scattering amplitudes, in particular we will consider their supersymmetrization and the dual picture.
17:00
Gradient Flow From A Random Walk in Hilbert Space
Abstract
In many applications it is of interest to compute minimizers of
a functional I(u) which is the of the form $J(u)=\Phi(u)+R(u)$,
with $R(u)$ quadratic. We describe a stochastic algorithm for
this problem which avoids explicit computation of gradients of $\Phi$;
it requires only the ability to sample from a Gaussian measure
with Cameron-Martin norm squared equal to $R(u)$, and the ability
to evaluate $\Phi$. We show that, in an appropriate parameter limit,
a piecewise linear interpolant of the algorithm converges weakly to a noisy
gradient flow. \\
Joint work with Natesh Pillai (Harvard) and Alex Thiery (Warwick).
The classification of subfactors of small index and the onset of wilderness
Abstract
In the 1990's Haagerup discovered a new subfactor, and hence a new topological quantum field theory, that has so far proved inaccessible by the methods of quantum groups and conformal field theory. It was the subfactor of smallest index beyond 4. This led to a classification project-classify all subfactors to as large an index as possible. So far we have gone as far as index 5. It is known that at index 6 wildness phenomena occur which preclude a simple listing of all subfactors of that index. It is possible that wildness occurs at a smaller index value, the main candidate being approximately 5.236.
15:45
"The classification of subfactors of small index and the onset of wildness."
Abstract
Abstract: In the 1990's Haagerup discovered a new subfactor, and hence a new topological quantum field theory, that has so far proved inaccessible by the methods of quantum groups and conformal field theory. It was the subfactor of smallest index beyond 4. This led to a classification project-classify all subfactors to as large an index as possible. So far we have gone as far as index 5. It is known that at index 6 wildness phenomena occur which preclude a simple listing of all subfactors of that index. It is possible that wildness occurs at a smaller index value, the main candidate being approximately 5.236.
14:15
Periods of Cubic Surfaces
Abstract
The moduli space of cubic surfaces is known to be isomorphic to a quotient of the unit ball in C^4 by an arithmetic
group. We review this construction, then explain how to construct
an explicit inverse to the period map by using suitable theta functions. This gives a new proof of the isomorphism between the two spaces.
14:15
Recent progress in duality methods for stochastic processes.
Abstract
Duality methods can be very powerful tools for the analysis of stochastic
processes. However, there seems to be no general theory available
yet. In this talk, I will discuss and aim to clarify various notions
of duality, give some recent rather striking examples (applied to
stochastic PDEs, interacting particle systems and combinatorial stochastic
processes)
and try to give some systematic insight into the type of questions
that can in principle be tackled. Finally, I will try to provide you
with some intuition for this fascinating technique.
14:15
Explicit Construction of a Dynamic Bessel Bridge of Dimension 3
Abstract
Given a deterministically time-changed Brownian motion Z starting from 1, whose time-change V (t) satisfies $V (t) > t$ for all $t>=0$, we perform an explicit construction of a process X which is Brownian motion in its own filtration and that hits zero for the first time at V (s), where $s:= inf {t > 0 : Z_t = 0}$. We also provide the semimartingale decomposition of $X >$ under
the filtration jointly generated by X and Z. Our construction relies on a combination of enlargement of filtration and filtering techniques. The resulting process X may be viewed as the analogue of a 3-dimensional Bessel bridge starting from 1 at time 0 and ending at 0 at the random time $V (s)$.
We call this a dynamic Bessel bridge since V(s) is not known in advance. Our study is motivated by insider trading models with default risk.(this is a joint work with Luciano Campi and Umut Cetin)
14:00
Gromov-Witten Invariants and Integrality
Abstract
We will give a quick and dirty introduction to Gromov-Witten theory and discuss some integrality properties of GW invariants. We will start by briefly recalling some basic properties of the Deligne Mumford moduli space of curves. We will then try to define GW invariants using both algebraic and symplectic geometry (both definitions will be rather sloppy, but hopefully the basic idea will become visible), talk a bit about the axiomatic definition due to to Kontsevich and Manin, and discuss some applications like quantum cohomology. Finally, we will talk a bit about integrality and the Gopakumar-Vafa conjecture. Just as a word of warning: this talk is intended as an introduction to the
subject and should give an overview, so we will perhaps be a bit sloppy here and there...
Student Transfer of Status presentations
Abstract
Emma Warneford: "Formation of Zonal Jets and the Quasigeostrophic Theory of the Thermodynamic Shallow Water Equations"
Georgios Anastasiades: "Quantile forecasting of wind power using variability indices"
17:00
"Some model theory of the free group".
Abstract
After Sela and Kharlampovich-Myasnikov independently proved that non abelian free groups share the same common theory model theoretic interest for the subject arose.
In this talk I will present a survey of results around this theory starting with basic model theoretic properties mostly coming from the connectedness of the free group (Poizat).
Then I will sketch our proof with C.Perin for the homogeneity of non abelian free groups and I will give several applications, the most important being the description of forking independence.
In the last part I will discuss a list of open problems, that fit in the context of geometric stability theory, together with some ideas/partial answers to them.