17:00
17:00
17:00
15:45
Convergence of stochastic differential equations in the rough path sense
Abstract
We show that the solutions of stochastic differential equations converge in
the rough path metric as the coefficients of these equations converge in a
suitable lipschitz norm. We then use this fact to obtain results about
differential equations driven by the Brownian rough path.
14:15
14:15
Random walks on critical percolation clusters
Abstract
It is now known that the overall behaviour of a simple random walk (SRW) on
supercritical (p>p_c) percolation cluster in Z^d is similiar to that of the SRW
in Z^d. The critical case (p=p_c) is much harder, and one needs to define the
'incipient infinite cluster' (IIC). Alexander and Orbach conjectured in 1982
that the return probability for the SRW on the IIC after n steps decays like
n^{2/3} in any dimension. The easiest case is that of trees; this was studied by
Kesten in 1986, but we can now revisit this problem with new techniques.
14:15
Transient dynamics: the key to ecological understanding
16:30
From Individual to Collective Behaviour in Biological Systems:
The Bacterial Example
17:00
15:00
Aspects of the Multivariate Tutte polynomial (alias Potts Model) in the limit q tends to 0
17:00
On the one-dimensional Perona-Malek equation
Abstract
We use the partial differential inclusion method to establish existence of
infinitely many weak solutions to the one-dimensional version of the
Perona-Malek anisotropic diffusion model in the theory of image processing. We
consider the homogeneous Neumann problem as the model requires.
.
15:45
Large deviations for the Yang-Mills measure
Abstract
The Yang-Mills energy is a non-negative functional on the space of connections on a principal bundle over a Riemannian manifold. At a heuristical level, this energy determines a Gibbs measure which is called the Yang-Mills measure. When the manifold is a surface, a stochastic process can be constructed - at least in two different ways - which is a sensible candidate for the random holonomy of a connection distributed according to the Yang-Mills measure. This process is constructed by using some specifications given by physicists of its distribution, namely some of its finite-dimensional marginals, which of course physicists have derived from the Yang-Mills energy, but by non-rigorous arguments. Without assuming any familiarity with this stochastic process, I will present a large deviations result which is the first rigorous link between the Yang-Mills energy and the Yang-Mills measure.
15:45
Smooth extensions of cohomology theories - a combined framework for primary and secondary invariants.
14:15
15:15