Mon, 11 May 2020
14:15
Virtual

Universal structures in enumerative invariant theories

Dominic Joyce
(Oxford)
Abstract

An enumerative invariant theory in Algebraic Geometry, Differential Geometry, or Representation Theory, is the study of invariants which 'count' $\tau$-(semi)stable objects $E$ with fixed topological invariants $[E]=\alpha$ in some geometric problem, by means of a virtual class $[{\mathcal M}_\alpha^{\rm ss}(\tau)]_{\rm virt}$ of the moduli spaces ${\mathcal M}_\alpha^{\rm st}(\tau)\subseteq{\mathcal M}_\alpha^{\rm ss}(\tau)$ of $\tau$-(semi)stable objects in some homology theory. Examples include Mochizuki's invariants counting coherent sheaves on surfaces, Donaldson-Thomas type invariants counting coherent sheaves on Calabi-Yau 3- and 4-folds and Fano 3-folds, and Donaldson invariants of 4-manifolds.

We make conjectures on new universal structures common to many enumerative invariant theories. Any such theory has two moduli spaces ${\mathcal M},{\mathcal M}^{\rm pl}$, where my big vertex algebras project http://people.maths.ox.ac.uk/~joyce/hall.pdf gives $H_*({\mathcal M})$ the structure of a graded vertex algebra, and $H_*({\mathcal M}^{\rm pl})$ a graded Lie algebra, closely related to $H_*({\mathcal M})$. The virtual classes $[{\mathcal M}_\alpha^{\rm ss}(\tau)]_{\rm virt}$ take values in $H_*({\mathcal M}^{\rm pl})$. In most such theories, defining $[{\mathcal M}_\alpha^{\rm ss}(\tau)]_{\rm virt}$ when ${\mathcal M}_\alpha^{\rm st}(\tau)\ne{\mathcal M}_\alpha^{\rm ss}(\tau)$ (in gauge theory, when the moduli space contains reducibles) is a difficult problem. We conjecture that there is a natural way to define $[{\mathcal M}_\alpha^{\rm ss}(\tau)]_{\rm virt}$ in homology over $\mathbb Q$, and that the resulting classes satisfy a universal wall-crossing formula under change of stability condition $\tau$, written using the Lie bracket on $H_*({\mathcal M}^{\rm pl})$. We prove our conjectures for moduli spaces of representations of quivers without oriented cycles.

This is joint work with Jacob Gross and Yuuji Tanaka.

 

Mon, 11 May 2020
12:45
Virtual

Holomorphic anomaly in Vafa-Witten theory -- ZOOM SEMINAR

Pavel Putrov
(ICTP Trieste)
Abstract

Vafa-Witten theory is a topologically twisted version of 4d N=4 super Yang-Mills theory. In my talk I will tell how to derive a holomorphic anomaly equation for its partition function on a Kaehler 4-manifold with b_2^+=1 and b_1=0 from the path integral of the effective theory on the Coulomb branch. I will also briefly mention an alternative and somewhat similar computation of the same holomorphic anomaly in the effective 2d theory obtained by compactification of the corresponding 6d (2,0) theory on the 4-manifold.
 

Fri, 08 May 2020

15:00 - 16:00
Virtual

Graph Filtrations with Spectral Wavelet Signatures

Ambrose Yim
(Oxford)
Abstract

We present a recipe for constructing filter functions on graphs with parameters that can optimised by gradient descent. This recipe, based on graph Laplacians and spectral wavelet signatures, do not require additional data to be defined on vertices. This allows any graph to be assigned a customised filter function for persistent homology computations and data science applications, such as graph classification. We show experimental evidence that this recipe has desirable properties for optimisation and machine learning pipelines that factors through persistent homology. 

Thu, 07 May 2020

17:00 - 18:00

On differing derived enhancements

Jay Swar
Abstract

In this talk I will briefly sketch the philosophy and methods in which derived enhancements of classical moduli problems are produced. I will then discuss the character variety and distinguish two of its enhancements; one of these will represent a derived moduli stack for local systems. Lastly, I will mention how variations of this moduli space have been represented in number theoretic and rigid analytic contexts.

Thu, 07 May 2020
17:00

Around classification for NIP theories

Pierre Simon
(UC Berkeley)
Abstract

I will present a conjectural picture of what a classification theory for NIP could look like, in the spirit of Shelah's classification theory for stable structures. Though most of it is speculative, there are some encouraging initial results about the lower levels of the classification, in particular concerning structures which, in some strong sense, do not contain trees.

Thu, 07 May 2020
16:00
Virtual

Variational principles for fluid dynamics on rough paths

James Michael Leahy
(Imperial College)
Further Information
Abstract

We introduce constrained variational principles for fluid dynamics on rough paths. The advection of the fluid is constrained to be the sum of a vector field which represents coarse-scale motion and a rough (in time) vector field which parametrizes fine-scale motion. The rough vector field is regarded as fixed and the rough partial differential equation for the coarse-scale velocity is derived as a consequence of being a critical point of the action functional.

 

The action functional is perturbative in the sense that if the rough vector f ield is set to zero, then the corresponding variational principle agrees with the reduced (to the vector fields) Euler-Poincare variational principle introduced in Holm, Marsden and Ratiu (1998). More precisely, the Lagrangian in the action functional encodes the physics of the fluid and is a function of only the coarse-scale velocity. 

 

By parametrizing the fine-scales of fluid motion with a rough vector field, we preserve the pathwise nature of deterministic fluid dynamics and establish a flexible framework for stochastic parametrization schemes. The main benefit afforded by our approach is that the system of rough partial differential equations we derive satisfy essential conservation laws, including Kelvin’s circulation theorem. This talk is based on recent joint work with Dan Crisan, Darryl Holm, and Torstein Nilssen.

Thu, 07 May 2020

16:00 - 17:00

Deep reinforcement learning for market making in corporate bonds

Iuliia Manziuk
(Ecole Polytechnique)
Abstract

 

In corporate bond markets, which are mainly OTC markets, market makers play a central role by providing bid and ask prices for a large number of bonds to asset managers from all around the globe. Determining the optimal bid and ask quotes that a market maker should set for a given universe of bonds is a complex task. Useful models exist, most of them inspired by that of Avellaneda and Stoikov. These models describe the complex optimization problem faced by market makers: proposing bid and ask prices in an optimal way for making money out of the difference between bid and ask prices while mitigating the market risk associated with holding inventory. While most of the models only tackle one-asset market making, they can often be generalized to a multi-asset framework. However, the problem of solving numerically the equations characterizing the optimal bid and ask quotes is seldom tackled in the literature, especially in high dimension. In this paper, our goal is to propose a numerical method for approximating the optimal bid and ask quotes over a large universe of bonds in a model à la Avellaneda-Stoikov. Because we aim at considering a large universe of bonds, classical finite difference methods as those discussed in the literature cannot be used and we present therefore a discrete time method inspired by reinforcement learning techniques. More precisely, the approach we propose is a model-based actor-critic-like algorithm involving deep neural networks

Thu, 07 May 2020

16:00 - 16:45
Virtual

OCIAM learns ... about exponential asymptotics

Professor Jon Chapman
(Mathematical Institute)
Further Information

A new bi-weekly seminar series, 'OCIAM learns...."

Internal speakers give a general introduction to a topic on which they are experts.

Thu, 07 May 2020

12:00 - 13:00
Virtual

Vectorial problems: sharp Lipschitz bounds and borderline regularity

Cristiana De FIlippis
(University of Oxford)
Abstract

Non-uniformly elliptic functionals are variational integrals like
\[
(1) \qquad \qquad W^{1,1}_{loc}(\Omega,\mathbb{R}^{N})\ni w\mapsto \int_{\Omega} \left[F(x,Dw)-f\cdot w\right] \, \textrm{d}x,
\]
characterized by quite a wild behavior of the ellipticity ratio associated to their integrand $F(x,z)$, in the sense that the quantity
$$
\sup_{\substack{x\in B \\ B\Subset \Omega \ \small{\mbox{open ball}}}}\mathcal R(z, B):=\sup_{\substack{x\in B \\ B\Subset \Omega \ \small{\mbox{open ball}}}} \frac{\mbox{highest eigenvalue of}\ \partial_{z}^{2} F(x,z)}{\mbox{lowest eigenvalue of}\  \partial_{z}^{2} F(x,z)} $$
may blow up as $|z|\to \infty$. 
We analyze the interaction between the space-depending coefficient of the integrand and the forcing term $f$ and derive optimal Lipschitz criteria for minimizers of (1). We catch the main model cases appearing in the literature, such as functionals with unbalanced power growth or with fast exponential growth such as
$$
w \mapsto \int_{\Omega} \gamma_1(x)\left[\exp(\exp(\dots \exp(\gamma_2(x)|Dw|^{p(x)})\ldots))-f\cdot w \right]\, \textrm{d}x
$$
or
$$
w\mapsto \int_{\Omega}\left[|Dw|^{p(x)}+a(x)|Dw|^{q(x)}-f\cdot w\right] \, \textrm{d}x.
$$
Finally, we find new borderline regularity results also in the uniformly elliptic case, i.e. when
$$\mathcal{R}(z,B)\sim \mbox{const}\quad \mbox{for all balls} \ \ B\Subset \Omega.$$

The talk is based on:
C. De Filippis, G. Mingione, Lipschitz bounds and non-autonomous functionals. $\textit{Preprint}$ (2020).

Wed, 06 May 2020

16:00 - 17:30
Virtual

Elementary embeddings and smaller large cardinals

Victoria Gitman
(City University of New York)
Abstract

A common theme in the definitions of larger large cardinals is the existence of elementary embeddings from the universe into an inner model. In contrast, smaller large cardinals, such as weakly compact and Ramsey cardinals, are usually characterized by their combinatorial properties such as existence of large homogeneous sets for colorings. It turns out that many familiar smaller large cardinals have elegant elementary embedding characterizations. The embeddings here are correspondingly ‘small’; they are between transitive set models of set theory, usually the size of the large cardinal in question. The study of these elementary embeddings has led us to isolate certain important properties via which we have defined robust hierarchies of large cardinals below a measurable cardinal. In this talk, I will introduce these types of elementary embeddings and discuss the large cardinal hierarchies that have come out of the analysis of their properties. The more recent results in this area are a joint work with Philipp Schlicht.

Wed, 06 May 2020
10:00
Virtual

Revisiting Leighton's Theorem

Daniel Woodhouse
(University of Oxford)
Abstract

Let X_1 and X_2 be finite graphs with isomorphic universal covers.

Leighton's graph covering theorem states that X_1 and X_2 have a common finite cover.

I will discuss recent work generalizing this theorem and how myself and Sam Shepherd have been applying it to rigidity questions in geometric group theory.

Tue, 05 May 2020

15:30 - 16:30

Large deviations for random matrices via spherical integrals

Alice Guionnet
(ENS Lyon)
Abstract

I will talk about how to get large deviations estimates for randomly rotated matrix models using the asymptotics of spherical (aka orbital, aka HCIZ) integrals. Compared to the talk I gave last week in integrable probability conference I will concentrate on random  matrices rather than symmetric functions.

Tue, 05 May 2020
15:30
Virtual

Multidimensional Erdős-Szekeres theorem

Benny Sudakov
(ETH Zurich)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

The classical Erdős-Szekeres theorem dating back almost a hundred years states that any sequence of $(n-1)^2+1$ distinct real numbers contains a monotone subsequence of length $n$. This theorem has been generalised to higher dimensions in a variety of ways but perhaps the most natural one was proposed by Fishburn and Graham more than 25 years ago. They raise the problem of how large should a $d$-dimesional array be in order to guarantee a "monotone" subarray of size $n \times n \times \ldots \times n$. In this talk we discuss this problem and show how to improve their original Ackerman-type bounds to at most a triple exponential. (Joint work with M. Bucic and T. Tran)

Tue, 05 May 2020
14:00
Virtual

Ryser's conjecture and more

Liana Yepremyan
(LSE)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

A Latin square of order n is an $n \times n$ array filled with $n$ symbols such that each symbol appears only once in every row or column and a transversal is a collection of cells which do not share the same row, column or symbol. The study of Latin squares goes back more than 200 years to the work of Euler. One of the most famous open problems in this area is a conjecture of Ryser, Brualdi and Stein from 60s which says that every Latin square of order $n \times n$ contains a transversal of order $n-1$. A closely related problem is 40 year old conjecture of Brouwer that every Steiner triple system of order $n$ contains a matching of size $\frac{n-4}{3}$. The third problem we'd like to mention asks how many distinct symbols in Latin arrays suffice to guarantee a full transversal? In this talk we discuss a novel approach to attack these problems. Joint work with Peter Keevash, Alexey Pokrovskiy and Benny Sudakov.

Mon, 04 May 2020

16:00 - 17:00

TBA

Mon, 04 May 2020

16:00 - 17:00

Connecting Generative adversarial networks with Mean Field Games

Xin Guo
(Berkeley, USA)
Abstract


Generative Adversarial Networks (GANs) have celebrated great empirical success, especially in image generation and processing. Meanwhile, Mean-Field Games (MFGs),  as analytically feasible approximations for N-player games, have experienced rapid growth in theory of controls. In this talk, we will discuss a new theoretical connections between GANs and MFGs. Interpreting MFGs as GANs, on one hand, allows us to devise GANs-based algorithm to solve MFGs. Interpreting GANs as MFGs, on the other hand, provides a new and probabilistic foundation for GANs. Moreover, this interpretation helps establish an analytical connection between GANs and Optimal Transport (OT) problems, the connection previously understood mostly from the geometric perspective. We will illustrate by numerical examples of using GANs to solve high dimensional MFGs, demonstrating its superior performance over existing methodology.

Mon, 04 May 2020
15:45
Virtual

Virtually algebraically fibered congruence subgroups

Ian Agol
(UC Berkeley)
Abstract

Addressing a question of Baker and Reid,

we give a criterion to show that an arithmetic group 

has a congruence subgroup that is algebraically

fibered. Some examples to which the criterion applies

include a hyperbolic 4-manifold group containing infinitely

many Bianchi groups, and a complex hyperbolic surface group.

This is joint work with Matthew Stover.

Mon, 04 May 2020
14:15
Virtual

Homology of moduli stacks of complexes

Jacob Gross
(Oxford)
Abstract

There are many known ways to compute the homology of the moduli space of algebraic vector bundles on a curve. For higher-dimensional varieties however, this problem is very difficult. It turns out that the moduli stack of objects in the derived category of a variety X, however, is topologically simpler than the moduli stack of vector bundles on X. We compute the rational homology of the moduli stack of complexes in the derived category of a smooth complex projective variety. For a certain class of varieties X including curves, surfaces, flag varieties, and certain 3- and 4-folds we get that the rational cohomology is freely generated by Künneth components of Chern characters of the universal complex––this allows us to identify Joyce's vertex algebra construction with a super-lattice vertex algebra on the rational cohomology of X in these cases. 

Mon, 04 May 2020
12:45
Virtual

Superstrings, Calabi-Yau Manifolds and Machine-Learning -- ZOOM SEMINAR

Yang-Hui He
(City University)
Abstract

We review how historically the problem of string phenomenology lead theoretical physics first to algebraic/diffenretial geometry, and then to computational geometry, and now to data science and AI.
With the concrete playground of the Calabi-Yau landscape, accumulated by the collaboration of physicists, mathematicians and computer scientists over the last 4 decades, we show how the latest techniques in machine-learning can help explore problems of physical and mathematical interest.
 

Fri, 01 May 2020

16:00 - 17:00
Virtual

Guidance in applying for EPSRC fellowships

Laura McDonnell
(UKRI EPSRC)
Abstract

In this session, Laura will explain the process of applying for an EPSRC fellowship. In particular, there will be a discussion on the Future Leaders Fellowships, New Investigator Awards and Standard Grant applications. There will also be a discussion on applying for EPSRC funding more generally. Laura will answer any questions that people have. 

Thu, 30 Apr 2020

17:00 - 18:00

Quiver varieties and Kac-Moody algebras

Filip Zivanovic
Abstract

Quiver varieties are one of the main objects of study in Geometric Representation Theory. Defined by Nakajima in 1994, there has been a lot of research on them, but there is still a lot to be yet discovered, especially about their geometry. In this seminar, I will talk about their first use in Geometric Representation Theory as providing geometric representations of symmetric Kac-Moody Lie algebras.

Email @email to get a link to the Jitsi meeting room (it is included in the weekly announcements).

Thu, 30 Apr 2020

16:45 - 17:30
Virtual

Extensions of C*-algebras

Christian Bonicke
(University of Glasgow)
Further Information

UK Virtual operator algebras seminar by zoom: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

Having its roots in classical operator theoretic questions, the theory of extensions of C*-algebras is now a powerful tool with applications in geometry and topology and of course within the theory of C*-algebras itself. In this talk I will give a gentle introduction to the topic highlighting some classical results and more recent applications and questions.

Thu, 30 Apr 2020

16:45 - 18:00
Virtual

Inverting a signature of a path

Weijun Xu
(University of Oxford)
Further Information
Abstract

Abstract: The signature of a path is a sequence of iterated coordinate integrals along the path. We aim at reconstructing a path from its signature. In the special case of lattice paths, one can obtain exact recovery based on a simple algebraic observation. For general continuously differentiable curves, we develop an explicit procedure that allows to reconstruct the path via piecewise linear approximations. The errors in the approximation can be quantified in terms of the level of signature used and modulus of continuity of the derivative of the path. The main idea is philosophically close to that for the lattice paths, and this procedure could be viewed as a significant generalisation. A key ingredient is the use of a symmetrisation procedure that separates the behaviour of the path at small and large scales.We will also discuss possible simplifications and improvements that may be potentially significant. Based on joint works with Terry Lyons, and also with Jiawei Chang, Nick Duffield and Hao Ni.