Thu, 27 Feb 2020
12:00
L4

New solutions to the stationary and dissipative Ginzburg-Landau model

Juan Davila
(University of Bath)
Abstract

I will describe new solutions to the stationary Ginzburg-Landau equation in 3 dimensions with vortex lines given by interacting helices, with degree one around each filament and total degree an arbitrary positive integer. I will also present results on the asymptotic behavior of vortices in the entire plane for a dissipative Ginzburg-Landau equation. This is work in collaboration with Manuel del Pino, Remy Rodiac, Maria Medina, Monica Musso and Juncheng Wei.

Thu, 27 Feb 2020
11:30
C4

Non-archimedean parametrizations and some bialgebraicity results

François Loeser
(Sorbonne Université)
Abstract

We will provide a general overview on some recent work on non-archimedean parametrizations and their applications. We will start by presenting our work with Cluckers and Comte on the existence of good Yomdin-Gromov parametrizations in the non-archimedean context and a $p$-adic Pila-Wilkie theorem.   We will then explain how this is used in our work with Chambert-Loir to prove bialgebraicity results in products of Mumford curves. 
 

Tue, 25 Feb 2020

16:00 - 17:00
C1

Functional calculus for analytic Besov functions

Charles Batty
(Oxford)
Abstract

There is a class $\mathcal{B}$ of analytic Besov functions on a half-plane, with a very simple description.   This talk will describe a bounded functional calculus $f \in \mathcal{B} \mapsto f(A)$ where $-A$ is the generator of either a bounded $C_0$-semigroup on Hilbert space or a bounded analytic semigroup on a Banach space.    This calculus captures many known results for such operators in a unified way, and sometimes improves them.   A discrete version of the functional calculus was shown by Peller in 1983.

Tue, 25 Feb 2020

15:30 - 16:30
L6

Randomised algorithms for computing low rank approximations of matrices

Per-Gunnar Martinsson
(U.T. Austin)
Abstract

The talk will describe how ideas from random matrix theory can be leveraged to effectively, accurately, and reliably solve important problems that arise in data analytics and large scale matrix computations. We will focus in particular on accelerated techniques for computing low rank approximations to matrices. These techniques rely on randomised embeddings that reduce the effective dimensionality of intermediate steps in the computation. The resulting algorithms are particularly well suited for processing very large data sets.

The algorithms described are supported by rigorous analysis that depends on probabilistic bounds on the singular values of rectangular Gaussian matrices. The talk will briefly review some representative results.

Note: There is a related talk in the Computational Mathematics and Applications seminar on Thursday Feb 27, at 14:00 in L4. There, the ideas introduced in this talk will be extended to the problem of solving large systems of linear equations.

Tue, 25 Feb 2020
14:30
L2

Low-rank plus sparse matrices: ill-posedness and guaranteed recovery

Simon Vary
(Oxford)
Abstract

Robust principal component analysis and low-rank matrix completion are extensions of PCA that allow for outliers and missing entries, respectively. Solving these problems requires a low coherence between the low-rank matrix and the canonical basis. However, in both problems the well-posedness issue is even more fundamental; in some cases, both Robust PCA and matrix completion can fail to have any solutions due to the fact that the set of low-rank plus sparse matrices is not closed. Another consequence of this fact is that the lower restricted isometry property (RIP) bound cannot be satisfied for some low-rank plus sparse matrices unless further restrictions are imposed on the constituents. By restricting the energy of one of the components, we close the set and are able to derive the RIP over the set of low rank plus sparse matrices and operators satisfying concentration of measure inequalities. We show that the RIP of an operator implies exact recovery of a low-rank plus sparse matrix is possible with computationally tractable algorithms such as convex relaxations or line-search methods. We propose two efficient iterative methods called Normalized Iterative Hard Thresholding (NIHT) and Normalized Alternative Hard Thresholding (NAHT) that provably recover a low-rank plus sparse matrix from subsampled measurements taken by an operator satisfying the RIP.
 

Tue, 25 Feb 2020
14:15
L4

A gallery model for affine flag varieties

Yusra Naqvi
(University of Sidney)
Abstract

Positively folded galleries arise as images of retractions of buildings onto a fixed apartment and play a role in many areas of maths (such as in the study of affine Hecke algebras, Macdonald polynomials, MV-polytopes, and affine Deligne-Lusztig varieties). In this talk, we will define positively folded galleries, and then look at how these can be used to study affine flag varieties. We will also look at a new recursive description of the set of end alcoves of folded galleries with respect to alcove-induced orientations, which gives us a combinatorial description of certain double coset intersections in these affine flag varieties. This talk is based on joint work with Elizabeth Milićević, Petra Schwer and Anne Thomas.

Tue, 25 Feb 2020
14:00
L6

Coordinate Deletion

Eero Räty
(Cambridge)
Abstract

For a family $A$ in $\{0,...,k\}^n$, its deletion shadow is the set obtained from $A$ by deleting from any of its vectors one coordinate. Given the size of $A$, how should we choose $A$ to minimise its deletion shadow? And what happens if instead we may delete only a coordinate that is zero? We discuss these problems, and give an exact solution to the second problem.

Tue, 25 Feb 2020
14:00
L2

Fast and stable randomized low-rank matrix approximation

Yuji Nakatsukasa
(Oxford)
Abstract

Randomized SVD has become an extremely successful approach for efficiently computing a low-rank approximation of matrices. In particular the paper by Halko, Martinsson (who is speaking twice this week), and Tropp (SIREV 2011) contains extensive analysis, and made it a very popular method. 
The complexity for $m\times n$ matrices is $O(Nr+(m+n)r^2)$ where $N$ is the cost of a (fast) matrix-vector multiplication; which becomes $O(mn\log n+(m+n)r^2)$ for dense matrices. This work uses classical results in numerical linear algebra to reduce the computational cost to $O(Nr)$ without sacrificing numerical stability. The cost is essentially optimal for many classes of matrices, including $O(mn\log n)$ for dense matrices. The method can also be adapted for updating, downdating and perturbing the matrix, and is especially efficient relative to previous algorithms for such purposes.  

 

Tue, 25 Feb 2020

12:45 - 14:00
C3

Automated quantitative myocardial perfusion MRI

Cian Scannell
(Kings College, London)
Abstract

Stress perfusion cardiac magnetic resonance (CMR) imaging has been shown to be highly accurate for the detection of coronary artery disease. However, a major limitation is that the accuracy of the visual assessment of the images is challenging and thus the accuracy of the diagnosis is highly dependent on the training and experience of the reader. Quantitative perfusion CMR, where myocardial blood flow values are inferred directly from the MR images, is an automated and user-independent alternative to the visual assessment.

This talk will focus on addressing the main technical challenges which have hampered the adoption of quantitative myocardial perfusion MRI in clinical practice. The talk will cover the problem of respiratory motion in the images and the use of dimension reduction techniques, such as robust principal component analysis, to mitigate this problem. I will then discuss our deep learning-based image processing pipeline that solves the necessary series of computer vision tasks required for the blood flow modelling and introduce the Bayesian inference framework in which the kinetic parameter values are inferred from the imaging data.

Tue, 25 Feb 2020
12:00
L4

Uniqueness & non-uniqueness results for wave equations

Jan Sbierski
(Oxford)
Abstract

A well-known theorem of Choquet-Bruhat and Geroch states that for given smooth initial data for the Einstein equations there exists a unique maximal globally hyperbolic development. In particular, time evolution of globally hyperbolic solutions is unique. This talk investigates whether the same result holds for quasilinear wave equations defined on a fixed background. After recalling the notion of global hyperbolicity, we first present an example of a quasilinear wave equation for which unique time evolution in fact fails and contrast this with the Einstein equations. We then proceed by presenting conditions on quasilinear wave equations which ensure uniqueness. This talk is based on joint work with Harvey Reall and Felicity Eperon.
 

Tue, 25 Feb 2020

12:00 - 13:00
C1

A framework for constructing generative models of mesoscale structure in multilayer networks

Marya Bazzi
(Alan Turing Institute)
Abstract

Multilayer networks are a way to represent dependent connectivity patterns — e.g., time-dependence, multiple types of interactions, or both — that arise in many applications and which are difficult to incorporate into standard network representations. In the study of multilayer networks, it is important to investigate mesoscale (i.e., intermediate-scale) structures, such as communities, to discover features that lie between the microscale and the macroscale. We introduce a framework for the construction of generative models for mesoscale structure in multilayer networks.  We model dependency at the level of partitions rather than with respect to edges, and treat the process of generating a multilayer partition separately from the process of generating edges for a given multilayer partition. Our framework can admit many features of empirical multilayer networks and explicitly incorporates a user-specified interlayer dependency structure. We discuss the parameters and some properties of our framework, and illustrate an example of its use with benchmark models for multilayer community-detection tools. 

 

Tue, 25 Feb 2020

10:00 - 11:00
S2.37

Mathematics of Brain Modelling - Spatial navigation in preclinical and clinical Alzheimer’s disease

Professor Michael Hornberger
(University of East Anglia)
Further Information

Booking Essential ociam@maths.ox.ac.uk

Abstract

Spatial navigation in preclinical and clinical Alzheimer’s disease - Relevance for topological data analysis?

Spatial navigation changes are one of the first symptoms of Alzheimer’s disease and also lead to significant safeguarding issues in patients after diagnosis. Despite their significant implications, spatial navigation changes in preclinical and clinical Alzheimer’s disease are still poorly understood. In the current talk, I will explain the spatial navigation processes in the brain and their relevance to Alzheimer’s disease. I will then introduce our Sea Hero Quest project, which created the first global benchmark data for spatial navigation in ~4.5 million people worldwide via a VR-based game. I will present data from the game, which has allowed to create personalised benchmark data for at-risk-of-Alzheimer’s people. The final part of my talk will explore how real-world environment & entropy impacts on dementia patients getting lost and how this has relevance for GPS technology based safeguarding and car driving in Alzheimer’s disease.

Mon, 24 Feb 2020

16:00 - 17:00

How close together are the rational points on a curve?

Netan Dogra
Abstract

Understanding the size of the rational points on a curve of higher genus is one of the major open problems in the theory of Diophantine equations. In this talk I will discuss the related problem of understanding how close together rational points can get. I will also discuss the relation to the subject of (generalised) Wieferich primes.

Mon, 24 Feb 2020

16:00 - 17:00
L4

$\Gamma$- convergence and homogenisation for a class of degenerate functionals

Federica Dragoni
(Cardiff University)
Abstract

I will present a $\Gamma$-convergence for degenerate integral functionals related to homogenisation problems  in the Heisenberg group. In our  case, both the rescaling and the notion of invariance or periodicity are chosen in a way motivated by the geometry of the Heisenberg group. Without using special geometric features, these functionals would be neither coercive nor periodic, so classic results do not apply.  All the results apply to the more general case of Carnot groups. Joint with Nicolas Dirr, Paola Mannucci and Claudio Marchi.

Mon, 24 Feb 2020
15:45
L6

Square pegs and non-orientable surfaces

Marco Golla
(Universite de Nantes)
Abstract

The square peg problem asks whether every Jordan curve in the
plane contains the vertices of a square. Inspired by Hugelmeyer's approach
for smooth curves, we give a topological proof for "locally 1-Lipschitz"
curves using 4-dimensional topology.

Mon, 24 Feb 2020

15:45 - 16:45
L3

Parabolic and hyperbolic Liouville equations

YUZHAO WANG
(Birmingham University)
Abstract

We will talk about some stochastic parabolic and hyperbolic partial differential equations (SPDEs), which arise naturally in the context of Liouville quantum gravity. These dynamics are proposed to preserve the Liouville measure, which has been constructed recently in the series of works by David-Kupiainen-Rhodes-Vargas. We construct global solutions to these equations under some conditions and then show the invariance of the Liouville measure under the resulting dynamics. As a by-product, we also answer an open problem proposed by Sun-Tzvetkov recently.
 

Mon, 24 Feb 2020

14:15 - 15:15
L3

Sharp estimates for metastable transition times in Allen-Cahn SPDEs on the torus

NILS BERGLUND
(Universite d'Orleans)
Abstract


Stochastic processes subject to weak noise often show a metastable
behaviour, meaning that they converge to equilibrium extremely slowly;
typically, the convergence time is exponentially large in the inverse
of the variance of the noise (Arrhenius law).
  
In the case of finite-dimensional Ito stochastic differential
equations, the large-deviation theory developed in the 1970s by
Freidlin and Wentzell allows to prove such Arrhenius laws and compute
their exponent. Sharper asymptotics for relaxation times, including the
prefactor of the exponential term (Eyring–Kramers laws) are known, for
instance, if the stochastic differential equation involves a gradient
drift term and homogeneous noise. One approach that has been very
successful in proving Eyring–Kramers laws, developed by Bovier,
Eckhoff, Gayrard and Klein around 2005, relies on potential theory.
  
I will describe Eyring–Kramers laws for some parabolic stochastic PDEs
such as the Allen–Cahn equation on the torus. In dimension 1, an
Arrhenius law was obtained in the 1980s by Faris and Jona-Lasinio,
using a large-deviation principle. The potential-theoretic approach
allows us to compute the prefactor, which turns out to involve a
Fredholm determinant. In dimensions 2 and 3, the equation needs to be
renormalized, which turns the Fredholm determinant into a
Carleman–Fredholm determinant.
  
Based on joint work with Barbara Gentz (Bielefeld), and with Ajay
Chandra (Imperial College), Giacomo Di Gesù (Vienna) and Hendrik Weber
(Warwick). 

References: 
https://dx.doi.org/10.1214/EJP.v18-1802
https://dx.doi.org/10.1214/17-EJP60

Mon, 24 Feb 2020

14:15 - 15:15
L4

Higgs bundles and higher Teichmüller components

Oscar Garcia-Prada
(CSIC Madrid)
Abstract

It is well-known that the Teichmüller space of a compact surface can be identified with a connected component of the moduli space of representations of the fundamental group of the surface in PSL(2,R). Higher Teichmüller components are generalizations of this that exist for the moduli space of representations of the fundamental group into certain real simple Lie groups of higher rank. As for the usual Teichmüller space, these components consist entirely  of discrete and faithful representations. Several cases have been identified over the years. First, the Hitchin components for split groups, then the maximal Toledo invariant components for Hermitian groups, and more recently certain components for SO(p,q). In this talk, I will describe a general construction of (still somewhat conjecturally) all possible Teichmüller components, and a parametrization of them using Higgs bundles.

Mon, 24 Feb 2020
12:45
L3

Quantizing superstrings in AdS/CFT, perturbatively and beyond

Valentina Forini
(City University London)
Abstract

String sigma-models relevant in the AdS/CFT correspondence are highly non-trivial two-dimensional field theories for which predictions at finite coupling exist, assuming integrability and/or the duality itself.  I will discuss general features of the perturbative approach to these models, and present progress on how to go extract finite coupling information in the most possibly general way, namely via the use of lattice field theory techniques. I will also present new results on certain ``defect-CFT’' correlators  at strong coupling. 

Sun, 23 Feb 2020

17:30 - 18:30
L1

Bach, the Universe and Everything - The Beauty of Mathematics SOLD OUT

Vicky Neale and The Orchestra of the Age of Enlightenment
Further Information

Bach, the Universe and Everything is a partnership between Oxford Mathematics, Music at Oxford and the Orchestra of the Age of Enlightenment where we put on our very own Sunday service for curious minds; a place where music and science rub shoulders. And a place where you get to join in.

The Science
You’ve heard that some people find mathematics as beautiful as Bach’s music, but you’re not really sure why. Dr Vicky Neale is here to convince you it is, as she explores the intoxicating mysteries of prime numbers and how they push the limits of human understanding.

The Music
BWV 196 is one of Bach’s first cantatas, written when he was in his early twenties for a friend’s wedding. It features a striking soprano aria, and an overall theme of ‘partnership’, with two factions of instruments uniting to become one.

Book here

Fri, 21 Feb 2020

15:00 - 16:00
N3.12

Two Models of Random Simplicial Complexes

Lewis Mead
(Queen Mary University of London)
Abstract

The talk will introduce two general models of random simplicial complexes which extend the highly studied Erdös-Rényi model for random graphs. These models include the well known probabilistic models of random simplicial complexes from Costa-Farber, Kahle, and Linial-Meshulam as special cases. These models turn out to have a satisfying Alexander duality relation between them prompting the hope that information can be transferred for free between them. This turns out to not quite be the case with vanishing probability parameters, but when all parameters are uniformly bounded the duality relation works a treat. Time permitting I may talk about the Rado simplicial complex, the unique (with probability one) infinite random simplicial complex.
This talk is based on various bits of joint work with Michael Farber, Tahl Nowik, and Lewin Strauss.

Fri, 21 Feb 2020

14:00 - 15:00
L1

Telling a mathematical story

Dr Vicky Neale and Dr Richard Earl
Abstract

Mathematicians need to talk and write about their mathematics.  This includes undergraduates and MSc students, who may be writing a dissertation or project report, preparing a presentation on a summer research project, or preparing for a job interview.  We think that it can be helpful to think of this as a form of storytelling, as this can lead to more effective communication.  For a story to be engaging you also need to know your audience.  In this session, we'll discuss what we mean by telling a mathematical story, give you some top tips from our experience, and give you a chance to think about how you might put this into practice.

Fri, 21 Feb 2020

14:00 - 15:00
L2

Tensors in biological data and algebraic statistics

Dr Anna Seigal
(Mathematical Institute University of Oxford)
Abstract

Tensors are higher dimensional analogues of matrices, used to record data with multiple changing variables. Interpreting tensor data requires finding multi-linear stucture that depends on the application or context. I will describe a tensor-based clustering method for multi-dimensional data. The multi-linear structure is encoded as algebraic constraints in a linear program. I apply the method to a collection of experiments measuring the response of genetically diverse breast cancer cell lines to an array of ligands. In the second part of the talk, I will discuss low-rank decompositions of tensors that arise in statistics, focusing on two graphical models with hidden variables. I describe how the implicit semi-algebraic description of the statistical models can be used to obtain a closed form expression for the maximum likelihood estimate.

Thu, 20 Feb 2020

16:00 - 17:00
L5

Analytic rank of automorphic L-functions

Hung Bui
(University of Manchester)
Abstract

The famous Birch & Swinnerton-Dyer conjecture predicts that the (algebraic) rank of an elliptic curve is equal to the so-called analytic rank, which is the order of vanishing of the associated L-functions at the central point. In this talk, we shall discuss the analytic rank of automorphic L-functions in an "alternate universe". This is joint work with Kyle Pratt and Alexandru Zaharescu.