11:00
11:00
Metric aspects of generalized Baumslag-Solitar groups
Abstract
A generalized Baumslag-Solitar group is a group G acting co-compactly on a tree X, with all vertex- and edge stabilizers isomorphic to the free abelian group of rank n. We will discuss the $L^p$-metric and $L^p$-equivariant compression of G, and also the quasi-isometric embeddability of G in a finite product of binary trees. Complete results are obtained when either $n=1$, or the quotient graph $G\X$ is either a tree or homotopic to a circle. This is joint work with Yves Cornulier.
Partial actions of Groups in Coarse Geometry
Abstract
Group actions play an important role in both topological problems and coarse geometric conjectures. I will introduce the idea of a partial action of a group on a metric space and explain, in the case of certain classes of coarsely disconnected spaces, how partial actions can be used to give a geometric proof of a result of Willett and Yu concerning the coarse Baum-Connes conjecture.
12:00
Decay of positive waves to hyperbolic systems of balance laws
Abstract
Historically, decay rates have been used to provide quantitative and qualitative information on the solutions to hyperbolic conservation laws. Quantitative results include the establishment of convergence rates for approximating procedures and numerical schemes. Qualitative results include the establishment of results on uniqueness and regularity as well as the ability to visualize the waves and their evolution in time.
In this talk, I will present two decay estimates on the positive waves for systems of hyperbolic and genuinely nonlinear balance laws satisfying a dissipative mechanism. The result is obtained by employing the continuity of Glimm-type functionals and the method of generalized characteristics. Using this result on the spreading of rarefaction waves, the rate of convergence for vanishing viscosity approximations to hyperbolic balance laws will also be established. The proof relies on error estimates that measure the interaction of waves using suitable Lyapunov functionals. If time allows, a further application of the recent developments in the theory of balance laws to differential geometry will be addressed.
11:30
Homotopy Limits
Abstract
In this talk, I will discuss homotopy limits: The basics, and why you should care about them if you are a topologist, an algebraic geometer, or an algebraist (have I missed anyone?).
17:00
3-coloring graphs with no induced 6-edge paths
Abstract
Since graph-coloring is an NP-complete problem in general, it is natural to ask how the complexity changes if the input graph is known not to contain a certain induced subgraph H. Due to results of Kaminski and Lozin, and Hoyler, the problem remains NP-complete, unless H is the disjoint union of paths. Recently the question of coloring graphs with a fixed-length induced path forbidden has received considerable attention, and only a few cases of that problem remain open for k-coloring when k>=4. However, little is known for 3-coloring. Recently we have settled the first open case for 3-coloring; namely we showed that 3-coloring graphs with no induced 6-edge paths can be done in polynomial time. In this talk we will discuss some of the ideas of the algorithm.
This is joint work with Peter Maceli and Mingxian Zhong.
The Wave Equation on Asymptotically Anti de Sitter Black Hole Spacetimes
Abstract
The study of wave equations on black hole backgrounds provides important insights for the non-linear stability problem for black holes. I will illustrate this in the context of asymptotically anti de Sitter black holes and present both stability and instability results. In particular, I will outline the main ideas of recent work with J. Smulevici (Paris) establishing a logarithmic decay in time for solutions of the massive wave equation on Kerr-AdS black holes and proving that this slow decay rate is in fact sharp.
The moduli space of topological realisations of an unstable coalgebra
Abstract
The mod p homology of a space is an unstable coalgebra over the Steenrod algebra at the prime p. This talk will be about the classical problem of realising an unstable coalgebra as the homology of a space. More generally, one can consider the moduli space of all such topological realisations and ask for a description of its homotopy type. I will discuss an obstruction theory which describes this moduli space in terms of the Andr\'{e}-Quillen cohomology of the unstable coalgebra. This is joint work with G. Biedermann and M. Stelzer.
Random conformally invariant curves and quantum group techniques
Abstract
In this talk we consider two questions about conformally invariant random curves known as Schramm-Loewner evolutions (SLE). The first question is about the "boundary zig-zags", i.e. the probabilities for a chordal SLE to pass through small neighborhoods of given boundary points in a given order. The second question is that of obtaining explicit descriptions of "multiple SLE pure geometries", i.e. those extremal multiple SLE probability measures which can not be expressed as non-trivial convex combinations of other multiple SLEs. For both problems one needs to find solutions of a system of partial differential equations with asymptotics conditions written recursively in terms of solution of the same problem with a smaller number of variables. We present a general correspondence, which translates these problems to linear systems of equations in finite dimensional representations of the quantum group U_q(sl_2), and we then explicitly solve these systems. The talk is based on joint works with Eveliina Peltola (Helsinki), and with Niko Jokela (Santiago de Compostela) and Matti Järvinen (Crete).
14:15
Metastability and interface motion in disordered media
Abstract
We will first review the return to equilibrium of the Ising model when a small external field is applied. The relaxation time is extremely long and can be estimated as the time needed to create critical droplets of the stable phase which will invade the whole system. We will then discuss the impact of disorder on this metastable behavior and show that for Ising model with random interactions (dilution of the couplings) the relaxation time is much faster as the disorder acts as a catalyst. In the last part of the talk, we will focus on the droplet growth and study a toy model describing interface motion in disordered media.
Stationary holographic plasma quenches and numerical methods for non-Killing horizons
Abstract
Option pricing, fake Brownian motion, and minimal variation
Abstract
Suppose we are given a double continuum (in time and strike) of discounted
option prices, or equivalently a set of measures which is increasing in
convex order. Given sufficient regularity, Dupire showed how to construct
a time-inhomogeneous martingale diffusion which is consistent with those
prices. But are there other martingales with the same 1-marginals? (In the
case of Gaussian marginals this is the fake Brownian motion problem.)
In this talk we show that the answer to the question above is yes.
Amongst the class of martingales with a given set of marginals we
construct the process with smallest possible expected total variation.
14:00
Mechanical models to explore biological phenomena
Abstract
Mechanics plays an important role during several biological phenomena such as morphogenesis,
wound healing, bone remodeling and tumorogenesis. Each one of these events is triggered by specific
elementary cell deformations or movements that may involve single cells or populations of cells. In
order to better understand how cell behave and interact, especially during degenerative processes (i.e.
tumorogenesis and metastasis), it has become necessary to combine both numerical and experimental
approaches. Particularly, numerical models allow determining those parameters that are still very
difficult to experimentally measure such as strains and stresses.
During the last few years, I have developed new finite element models to simulate morphogenetic
movements in Drosophila embryo, limb morphogenesis, bone remodeling as well as single and
collective cell migration. The common feature of these models is the multiplicative decomposition of
the deformation gradient which has been used to take into account both the active and the passive
deformations undergone by the cells. I will show how this mechanical approach, firstly used in the
seventies by Lee and Mandel to describe large viscoelastic deformations, can actually be very
powerful in modeling the biological phenomena mentioned above.
OCCAM Group Meeting
Abstract
- Sean Lim - Full waveform inversion: a first look
- Alex Raisch - Bistable liquid crystal displays: modelling, simulation and applications
- Vladimir Zubkov - Mathematical model of kidney morphogenesis
Asymptotic Behavior of Problems in Cylindrical Domains - Lecture 1 of 4
Abstract
A mini-lecture series consisting of four 1 hour lectures.
We would like to consider asymptotic behaviour of various problems set in cylinders. Let $\Omega_\ell = (-\ell,\ell)\times (-1,1)$ be the simplest cylinder possible. A good model problem is the following. Consider $u_\ell$ the weak solution to $$ \cases{ -\partial_{x_1}^2 u_\ell - \partial_{x_2}^2 u_\ell = f(x_2) \quad \hbox{in } \Omega_\ell, \quad \cr \cr u_\ell = 0 \quad \hbox{ on } \quad \partial \Omega_\ell. \cr} $$ When $\ell \to \infty$ is it trues that the solution converges toward $u_\infty$ the solution of the lower dimensional problem below ? $$ \cases{ - \partial_{x_2}^2 u_\infty = f(x_2) \quad \hbox{in }(-1,1), \quad \cr \cr u_\infty = 0 \quad \hbox{ on } \quad \partial (-1,1). \cr} $$ If so in what sense ? With what speed of convergence with respect to $\ell$ ? What happens when $f$ is also allowed to depend on $x_1$ ? What happens if $f$ is periodic in $x_1$, is the solution forced to be periodic at the limit ? What happens for general elliptic operators ? For more general cylinders ? For nonlinear problems ? For variational inequalities ? For systems like the Stokes problem or the system of elasticity ? For general problems ? ... We will try to give an update on all these issues and bridge these questions with anisotropic singular perturbations problems. \smallskip \noindent {\bf Prerequisites} : Elementary knowledge on Sobolev Spaces and weak formulation of elliptic problems.Arithmetic restriction theory and Waring's problem
Abstract
We will discuss arithmetic restriction phenomena and its relation to Waring's problem, focusing on how recent work of Wooley implies certain restriction bounds.
Discrete nonlinear dynamics and the design of new materials
Abstract
We develop a physical understanding of how stress waves propagate in uniform, heterogeneous, ordered and disordered media composed of discrete granular particles. We exploit this understanding to create experimentally novel materials and devices at different scales, (for example, for application in energy absorption, acoustic imaging and energy harvesting). We control the constitutive behavior of the new materials selecting the particles’ geometry, their arrangement and materials properties. One-dimensional chains of particles exhibit a highly nonlinear dynamic response, allowing a completely new type of wave propagation that has opened the door to exciting fundamental physical observations (i.e., compact solitary waves, energy trapping phenomena, and acoustic rectification). This talk will focus on energy localization and redirection in one-, two- and three-dimensional systems. (For an extended abstract please contact Ruth @email).
A brief survey on Ricci flow
Abstract
Based on ideas from Eells and Sampson, the Ricci flow was introduced by R. Hamilton in 1982 to try to prove Thurston's Geometrization Conjecture (a path which turned out to be successful). In this talk we will introduce the Ricci flow equation and view it as a modified heat flow. Using this we will prove the basic results on existence and uniqueness, and gain some insight into the evolution of various geometric quantities under Ricci flow. With this results we will proceed to define Perelman's $\mathcal{F}$ and $\mathcal{W}$ entropy functionals to view the Ricci flow as a gradient flow. If time permits we will briefly sketch some results from Cheeger and Gromov's compactness theory, which, along with the entropy functionals, alow us to blow up singularities.This is meant to be an introductory talk so I will try to develop as much geometric intuition as possible and stay away from technical calculations.
Modules over Algebraic Quantizations and representation theory
Abstract
Recently, there has been a great deal of interest in the theory of modules over algebraic quantizations of so-called symplectic
resolutions. In this talk I'll discuss some new work -joint, and very much in progress- that open the door to giving a geometric description to certain categories of such modules; generalizing classical theorems of Kashiwara and Bernstein in the case of D-modules on an algebraic variety.
Superconvergence for Discontinuous Galerkin solutions: Making it Useful
Abstract
The discontinuous Galerkin (DG) method has recently become one of the most widely researched and utilized discretization methodologies for solving problems in science and engineering. It is fundamentally based upon the mathematical framework of variational methods, and provides hope that computationally fast, efficient and robust methods can be constructed for solving real-world problems. By not requiring that the solution to be continuous across element boundaries, DG provides a flexibility that can be exploited both for geometric and solution adaptivity and for parallelization. This freedom comes at a cost. Lack of smoothness across elements can hamper simulation post-processing like feature extraction and visualization. However, these limitations can be overcome by taking advantage of an additional property of DG - that of superconvergence. Superconvergence can aid in addressing the lack of continuity through the development of Smoothness-Increasing Accuracy-Conserving (SIAC) filters. These filters respect the mathematical properties of the data while providing levels of smoothness so that commonly used visualization tools can be used appropriately, accurately, and efficiently. In this talk, the importance of superconvergence in applications such as visualization will be discussed as well as overcoming the mathematical barriers in making superconvergence useful for applications.
Ambiguity averse portfolio optimization with respect to quasi-concave utility functionals
12:01
Weak solutions to the barotropic Navier-Stokes system with slip boundary conditions in time dependent domains and incompressible limits
Abstract
- [1] E. Feireisl, O. Kreml, S. Nečasová, J. Neustupa, and J. Stebel. Weak solutions to the barotropic NavierStokes system with slip boundary conditions in time dependent domains. J. Differential Equations, 254:125–140, 2013.
- [2] E. Feireisl, O. Kreml, S. Nečasová, J. Neustupa, and J. Stebel. Incompressible limits of fluids excited by moving boundaries. Submitted
Amenable hyperbolic groups
Abstract
The integers (while wonderful in many others respects) do not make for fascinating Geometric Group Theory. They are, however, essentially the only infinite finitely generated group which is both hyperbolic and amenable. In the class of locally compact topological groups, the intersection of these two notions is richer, and the major aim of this talk will be to give the structure of a classification of such groups due to Caprace-de Cornulier-Monod-Tessera, beginning with Milnor's proof that any connected Lie group admitting a left-invariant negatively curved Riemannian metric is necessarily soluble.
11:30
Categorification
Abstract
Categorification is a fancy word for a process that is pretty ubiquitous in mathematics, though it is usually not referred to as "a thing". With the advent of higher category theory it has, however, become "a thing". I will explain what people mean by this "thing" (sneak preview: it involves replacing sets by categories) and hopefully convince you it is not quite as alien as it may seem and maybe even tempt you to let it infect some of your maths. I'll then explain how this fits into the context of higher categories.
Descent for n-Bundles
Abstract
Given a Lie group $G$, one can construct a principal $G$-bundle on a manifold $M$ by taking a cover $U\to M$, specifying a transition cocycle on the cover, and then descending the trivialized bundle $U \times G$ along the cocycle. We demonstrate the existence of an analogous construction for local $n$-bundles for general $n$. We establish analogues for simplicial Lie groupoids of Moore's results on simplicial groups; these imply that bundles for strict Lie $n$-groupoids arise from local $n$-bundles. We conclude by constructing a simple finite dimensional model of the Lie 2-group String($n$) using cohomological data.
Positivity problems for low-order linear recurrence sequences
Abstract
We consider two decision problems for linear recurrence sequences(LRS) over the integers, namely the Positivity Problem (are all terms of a given LRS positive?) and the Ultimate Positivity Problem (are all but finitely many terms of a given LRS positive?). We show decidability of both problems for LRS of order 5 or less, and for simple LRS (i.e. whose characteristic polynomial has no repeated roots) of order 9 or less. Moreover, we show by way of hardness that extending the decidability of either problem to LRS of order 6 would entail major breakthroughs in analytic number theory, more precisely in the field of Diophantine approximation of transcendental numbers.
This talk is based on a recent paper, available at
http://www.cs.ox.ac.uk/people/joel.ouaknine/publications/positivity13ab…
joint with James Worrell and Matt Daws.
14:15
Using probabilistic weather forecasts for practical decision making: Thoughts from an energy trading perspective
Abstract
I'm going to make the talk more of a general discussion about weather forecasts and how they are used for practical decision making in energy trading in the first half, then spend the second half focusing on how we think about assessing and using the notion of state dependent predictability in our decision making process.
Moduli spaces of instantons - stringy and combinatorial perspectives
12:00
Higher dimensional isometric embedding
Abstract
I will present new results on local smooth embedding of Riemannian manifolds of dimension $n$ into Euclidean space of dimension $n(n+1)/2$. This part of ac joint project with G-Q Chen ( OxPDE), Jeanne Clelland ( Colorado), Dehua Wang ( Pittsburgh), and Deane Yang ( Poly-NYU).
00:00
Spectral presheaves as generalised (Gelfand) spectra
Abstract
The spectral presheaf of a nonabelian von Neumann algebra or C*-algebra was introduced as a generalised phase space for a quantum system in the so-called topos approach to quantum theory. Here, it will be shown that the spectral presheaf has many features of a spectrum of a noncommutative operator algebra (and that it can be defined for other classes of algebras as well). The main idea is that the spectrum of a nonabelian algebra may not be a set, but a presheaf or sheaf over the base category of abelian subalgebras. In general, the spectral presheaf has no points, i.e., no global sections. I will show that there is a contravariant functor from unital C*-algebras to their spectral presheaves, and that a C*-algebra is determined up to Jordan *-isomorphisms by its spectral presheaf in many cases. Moreover, time evolution of a quantum system can be described in terms of flows on the spectral presheaf, and commutators show up in a natural way. I will indicate how combining the Jordan and Lie algebra structures may lead to a full reconstruction of nonabelian C*- or von Neumann algebra from its spectral presheaf.
Multiple scales in the dynamics of compressible fluids
Abstract
We discuss several singular limits for a scaled system of equations
(barotropic Navier-Stokes system), where the characteristic numbers become
small or ``infinite''. In particular, we focus on the situations relevant
in certain geophysical models with low Mach, large Rossby and large
Reynolds numbers. The limit system is rigorously identified in the
framework of weak solutions. The relative entropy inequality and careful
analysis of certain oscillatory integrals play crucial role.
Torsion-free generalized connections and heterotic supergravity
Abstract
The Morse-Sard Theorem for $W^{n,1}$ Sobolev functions on $\mathbb R^n$ and applications in fluid mechanics
Abstract
The talk is based on the joint papers [{\it Bourgain J., Korobkov
M.V. and Kristensen~J.}: Journal fur die reine und angewandte Mathematik
(Crelles
Journal).
DOI: 10.1515/crelle-2013-0002] \ and \
[{\it Korobkov~M.V., Pileckas~K. and Russo~R.}:
arXiv:1302.0731, 4 Feb 2013]
We establish Luzin $N$ and Morse--Sard
properties for functions from the Sobolev space
$W^{n,1}(\mathbb R^n)$. Using these results we prove
that almost all level sets are finite disjoint unions of
$C^1$-smooth compact manifolds of dimension
$n-1$. These results remain valid also within
the larger space of functions of bounded variation
$BV_n(\mathbb R^n)$.
As an application, we study the nonhomogeneous boundary value problem
for the Navier--Stokes equations of steady motion of a viscous
incompressible fluid in arbitrary bounded multiply connected
plane or axially-symmetric spatial domains. We prove that this
problem has a solution under the sole necessary condition of zero total
flux through the boundary.
The problem was formulated by Jean Leray 80 years ago.
The proof of the main result uses Bernoulli's law
for a weak solution to the Euler equations based on the above-mentioned
Morse-Sard property for Sobolev functions.
Vigorous convection in porous media, with application to CO${}_2$ sequestration
Abstract
Convection in a porous medium plays an important role in many geophysical and industrial processes, and is of particular current interest due to its implications for the long-term security of geologically sequestered CO_2. I will discuss two different convective systems in porous media, with the aid of 2D direct numerical simulations: first, a Rayleigh-Benard cell at high Rayleigh number, which gives an accurate characterization both of the convective flux and of the remarkable dynamical structure of the flow; and second, the evolution and eventual `shut-down' of convection in a sealed porous domain with a source of buoyancy along only one boundary. The latter case is also studied using simple box models and laboratory experiments, and can be extended to consider convection across an interface that can move and deform, rather than across a rigid boundary. The relevance of these results in the context of CO_2 sequestration will be discussed.
The p-adic monodromy group of abelian varieties over global function fields of characteristic p
Abstract
We prove an analogue of the Tate isogeny conjecture and the
semi-simplicity conjecture for overconvergent crystalline Dieudonne modules
of abelian varieties defined over global function fields of characteristic
p, combining methods of de Jong and Faltings. As a corollary we deduce that
the monodromy groups of such overconvergent crystalline Dieudonne modules
are reductive, and after base change to the field of complex numbers they
are the same as the monodromy groups of Galois representations on the
corresponding l-adic Tate modules, for l different from p.
Elliptic curves with rank one
Abstract
I will discuss some p-adic (and mod p) criteria ensuring that an elliptic curve over the rationals has algebraic and analytic rank one, as well as some applications.
Consequences of Viscous Anisotropy in Partially Molten Rocks
Abstract
In partially molten regions of Earth, rock and magma coexist as a two-phase aggregate in which the solid grains of rock form a viscously deformable matrix. Liquid magma resides within the permeable network of pores between grains. Deviatoric stress causes the distribution of contact area between solid grains to become anisotropic; this causes anisotropy of the matrix viscosity. The anisotropic viscosity tensor couples shear and volumetric components of stress/strain rate. This coupling, acting over a gradient in shear stress, causes segregation of liquid and solid. Liquid typically migrates toward higher shear stress, but under specific conditions, the opposite can occur. Furthermore, in a two-phase aggregate with a porosity-weakening viscosity, matrix shear causes porosity perturbations to grow into a banded structure. We show that viscous anisotropy reduces the angle between these emergent high-porosity features and the shear plane. This is consistent with lab experiments.