Tue, 31 May 2016

15:45 - 16:45
L4

Non-reductive GIT for graded groups and curve counting

Greg Berczi
(Oxford)
Abstract
I will start with a short report on recent progress in constructing quotients by actions of non-reductive algebraic groups and extending Mumford's geometric invariant theory to a wide class of non-reductive linear algebraic groups which we call graded groups. I will then explain how certain components of the Hilbert scheme of points on smooth varieties can be described as non-reductive quotients and why this description is especially efficient to study the topology of Hilbert schemes. In particular I will explain how equivariant localisation can be used to develop iterated residue formulae for tautological integrals on geometric subsets of Hilbert schemes and I present new formulae counting curves on surfaces (and more generally hypersurfaces in smooth varieties) with given singularity classes. This talk is based on joint works with Frances Kirwan, Thomas Hawes, Brent Doran and Andras Szenes. 
Fri, 27 May 2016

13:00 - 14:30
L6

Deep Learning for Modeling Financial Data

Justin Sirignano, postdoc at Imperial College.
(Imperial College London)
Abstract
Deep learning has emerged as one of the forefront areas in machine learning, achieving major success in imaging, speech recognition, and natural language processing. We apply deep learning to two areas in finance: (1) mortgage delinquency and prepayment and (2) limit order books. Using datasets unprecedented in size, we show that deep neural networks outperform several status quo approaches. Due to the heavy computational cost from both the size of the models and the data, we use GPU clusters to train the models.
Fri, 27 May 2016

11:00 - 12:00
C2

The de Rham algebra

Kevin McGerty
(Oxford)
Abstract

This talk will describe the basic properties of the de Rham algebra, which is a generalisation of the de Rham algebra over smooth schemes, which was introduced by L. Illusie in his monograph 'Complexe cotangent et déformations'.

Fri, 27 May 2016
10:00
L4

Mathematical models of genome replication

Conrad Nieduszynski
(Sir William Dunn School of Pathology)
Abstract

We aim to determine how cells faithfully complete genome replication. Accurate and complete genome replication is essential for all life. A single DNA replication error in a single cell division can give rise to a genomic disorder. However, almost all experimental data are ensemble; collected from millions of cells. We used a combination of high-resolution, genomic-wide DNA replication data, mathematical modelling and single cell experiments to demonstrate that ensemble data mask the significant heterogeneity present within a cell population; see [1-4]. Therefore, the pattern of replication origin usage and dynamics of genome replication in individual cells remains largely unknown. We are now developing cutting-edge single molecule methods and allied mathematical models to determine the dynamics of genome replication at the DNA sequence level in normal and perturbed human cells.

[1] de Moura et al., 2010, Nucleic Acids Research, 38: 5623-5633

[2] Retkute et al, 2011, PRL, 107:068103

[3] Retkute et al, 2012, PRE, 86:031916

[4] Hawkins et al., 2013, Cell Reports, 5:1132-41

Fri, 27 May 2016
10:00
N3.12

tba

Richard Mathers
Thu, 26 May 2016
17:30
L6

Topological dynamics of automorphism groups and the Hrushovski constructions

David Evans
((Imperial College, London))
Abstract

I will consider automorphism groups of countable structures acting continuously on compact spaces: the viewpoint of topological dynamics. A beautiful paper of Kechris, Pestov and Todorcevic makes a connection between this and the ‘structural Ramsey theory’ of Nesetril, Rodl and others in finite combinatorics. I will describe some results and questions in the area and say how the Hrushovski predimension constructions provide answers to some of these questions (but then raise more questions). This is joint work with Hubicka and Nesetril.

 
Thu, 26 May 2016

16:00 - 17:00
C5

Cohomogeneity one Ricci solitons

Alejandro Betancourt
(Oxford)
Abstract

Abstract: Ricci solitons are genralizations of Einstein metrics which have become subject of much interest over the last decade. In this talk I will give a basic introduction to these metrics and discuss how to reformulate the Ricci soliton equation as a Hamiltonian system assuming some symmetry conditions. Using this approach we will construct explicit solutions to the soliton equation for manifolds of dimension 5.

Thu, 26 May 2016
16:00
L6

Sub-convexity in certain Diophantine problems via the circle method

Trevor Wooley
(University of Bristol)
Abstract

The sub-convexity barrier traditionally prevents one from applying the Hardy-Littlewood (circle) method to Diophantine problems in which the number of variables is smaller than twice the inherent total degree. Thus, for a homogeneous polynomial in a number of variables bounded above by twice its degree, useful estimates for the associated exponential sum can be expected to be no better than the square-root of the associated reservoir of variables. In consequence, the error term in any application of the circle method to such a problem cannot be expected to be smaller than the anticipated main term, and one fails to deliver an asymptotic formula. There are perishingly few examples in which this sub-convexity barrier has been circumvented, and even fewer having associated degree exceeding two. In this talk we review old and more recent progress, and exhibit a new class of examples of Diophantine problems associated with, though definitely not, of translation-invariant type.

Thu, 26 May 2016

16:00 - 17:30
L4

Dividends, capital injections and discrete observation effects in risk theory

Hansjoerg Albrecher
(Universite de Lausanne)
Abstract

In the context of surplus models of insurance risk theory, 
some rather surprising and simple identities are presented. This 
includes an
identity relating level crossing probabilities of continuous-time models 
under (randomized) discrete and continuous observations, as well as
reflection identities relating dividend payments and capital injections. 
Applications as well as extensions to more general underlying processes are
discussed.

 

Thu, 26 May 2016

16:00 - 17:00
L3

IAM Group Meeting

Mason Porter, Robert Van Gorder
Abstract

A Simple Generative Model of Collective Online Behavior (Mason Porter)

Human activities increasingly take place in online environments, providing novel opportunities for relating individual behaviors to population-level outcomes. In this paper, we introduce a simple generative model for the collective behavior of millions of social networking site users who are deciding between different software applications. Our model incorporates two distinct mechanisms: one is associated with recent decisions of users, and the other reflects the cumulative popularity of each application. Importantly, although various combinations of the two mechanisms yield long-time behav- ior that is consistent with data, the only models that reproduce the observed temporal dynamics are those that strongly emphasize the recent popularity of applications over their cumulative popularity.

This demonstrates --- even when using purely observational data with- out experimental design --- that temporal data-driven modeling can effectively distinguish between competing microscopic mechanisms, allowing us to uncover previously unidentified aspects of collective online behavior.

---

Bubbles, Turing machines, and possible routes to Navier-Stokes blow-up (Robert van Gorder)

Navier-Stokes existence and regularity in three spatial dimensions for an incompressible fluid... is hard. Indeed, while the original equations date back to the 1840's, existence and regularity remains an open problem and is one of the six remaining Millennium Prize Problems in mathematics that were stated by the Clay Mathematics Institute in 2000. Despite the difficulty, a resolution to this problem may say little about real-world fluids, as many real fluid problems do not seem to blow-up, anyway.
In this talk, we shall briefly outline the mathematical problem, although our focus shall be on the negative direction; in particular, we focus on the possibility of blow-up solutions. We show that many existing blow-up solutions require infinite energy initially, which is unreasonable. Therefore, obtaining a blow-up solution that starts out with nice properties such as bounded energy on three dimensional Euclidean space is rather challenging. However, if we modify the problem, there are some results. We survey recent results on averaged Navier-Stokes equations and compressible Navier-Stokes equations, and this will take us anywhere from bubbles to fluid Turing machines. We discuss how such results might give insight into the loss of regularity in the incompressible case (or, insight into how hard it might be to loose regularity of solutions when starting with finite energy in the incompressible case), before philosophizing about whether mathematical blow-up solutions could ever be physically relevant.

Thu, 26 May 2016

13:00 - 14:00
L4

Crystal, PBW, and canonical bases for quantized enveloping algebras

Gerald Cliff
(University of Alberta)
Abstract

Let U be the quantized enveloping algebra coming from a semi-simple finite dimensional complex Lie algebra. Lusztig has defined a canonical basis B for the minus part of U- of U. It has the remarkable property that one gets a basis of each highest-weight irreducible U-module V, with highest weight vector v, as the set of all bv which are not 0, as b varies in B. It is not known how to give the elements b explicitly, although there are algorithms.


For each reduced expression of the longest word in the Weyl group, Lusztig has defined a PBW basis P of U-, and for each b in B there is a unique p(b) in P such that b = p(b) + a linear combination of p' in P where the coefficients are in qZ[q]. This is much easier in the simply laced case. I show that the set of p(b)v, where b varies in B and bv is not 0, is a basis of V, and I can explicitly exhibit this basis in type A, and to some extent in types B, C, D.

It is known that B and P are crystal bases in the sense of Kashiwara. I will define Kashiwara operators, and briefly describe Kashiwara's approach to canonical bases, which he calls global bases. I show how one can calculate the Kashiwara operators acting on P, in types A, B, C, D, using tableaux of Kashiwara-Nakashima.

Wed, 25 May 2016

16:00 - 17:00
C1

Simplicial Boundary of CAT(0) Cube Complexes

Kobert Ropholler
(Oxford)
Abstract

The simplicial boundary is another way to study the boundary of CAT(0) cube complexes. I will define this boundary introducing the relevant terminology from CAT(0) cube complexes along the way. There will be many examples and many pictures, hopefully to help understanding but also to improve my (not so great) drawing skills. 

Wed, 25 May 2016
16:00
L6

A counterexample concerning regularity properties for systems of conservation laws

Laura Caravenna
(Università degli Studi di Padova)
Abstract
In 1973 D. G. Schaeffer established an interesting regularity result that applies to scalar conservation laws with uniformly convex fluxes. Loosely speaking, it can be formulated as follows: for a generic smooth initial datum, the admissible solution is smooth outside a locally finite number of curves in the time-space plane. Here the term ``generic`` should be interpreted in a suitable technical sense, related to the Baire Category Theorem. Several author improved later his result, also for numerical purposes, while only C. M. Dafermos and X. Cheng extended it in 1991 to a special 2x2 system with coinciding shock and rarefaction curves and which satisfies an assumption that reframes what in the scalar case is the assumption of uniformly convex flux, called `genuine nonlinearity'. My talk will aim at discussing a recent explicit counterexample that shows that for systems of at least three equations, even when the flux satisfies the assumption of genuinely nonlinearity, Schaeffer`s Theorem does not extend because countably many shocks might develop from a ``big`` family of smooth initial data. I will then mention related works in progress.
Wed, 25 May 2016
15:00
L4

Breaking Symmetric Cryptosystems using Quantum Period Finding

Gaëtan Leurent
(INRIA)
Abstract

Due to Shor's algorithm, quantum computers are a severe threat for public key cryptography. This motivated the cryptographic community to search for quantum-safe solutions. On the other hand, the impact of quantum computing on secret key cryptography is much less understood. In this paper, we consider attacks where an adversary can query an oracle implementing a cryptographic primitive in a quantum superposition of different states. This model gives a lot of power to the adversary, but recent results show that it is nonetheless possible to build secure cryptosystems in it.
We study applications of a quantum procedure called Simon's algorithm (the simplest quantum period finding algorithm) in order to attack symmetric cryptosystems in this model. Following previous works in this direction, we show that several classical attacks based on finding collisions can be dramatically sped up using Simon's algorithm: finding a collision requires Ω(2n/2) queries in the classical setting, but when collisions happen with some hidden periodicity, they can be found with only O(n) queries in the quantum model.
We obtain attacks with very strong implications. First, we show that the most widely used modes of operation for authentication and authenticated encryption (e.g. CBC-MAC, PMAC, GMAC, GCM, and OCB) are completely broken in this security model. Our attacks are also applicable to many CAESAR candidates: CLOC, AEZ, COPA, OTR, POET, OMD, and Minalpher. This is quite surprising compared to the situation with encryption modes: Anand et al. show that standard modes are secure when using a quantum-secure PRF.
Second, we show that slide attacks can also be sped up using Simon's algorithm. This is the first exponential speed up of a classical symmetric cryptanalysis technique in the quantum model.

Wed, 25 May 2016

11:00 - 12:30
N3.12

TBA

Philip Dittman
(Oxford)