Date
Thu, 14 Jun 2007
Time
14:00 - 15:00
Location
Comlab
Speaker
Prof Tom Hou
Organisation
Caltech

Whether the 3D incompressible Euler or Navier-Stokes equations

can develop a finite time singularity from smooth initial data has been

an outstanding open problem. Here we review some existing computational

and theoretical work on possible finite blow-up of the 3D Euler equations.

We show that the geometric regularity of vortex filaments, even in an

extremely localized region, can lead to dynamic depletion of vortex

stretching, thus avoid finite time blowup of the 3D Euler equations.

Further, we perform large scale computations of the 3D Euler equations

to re-examine the two slightly perturbed anti-parallel vortex tubes which

is considered as one of the most attractive candidates for a finite time

blowup of the 3D Euler equations. We found that there is tremendous dynamic

depletion of vortex stretching and the maximum vorticity does not grow faster

than double exponential in time. Finally, we present a new class of solutions

for the 3D Euler and Navier-Stokes equations, which exhibit very interesting

dynamic growth property. By exploiting the special nonlinear structure of the

equations, we prove nonlinear stability and the global regularity of this class of solutions.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.