From MHV diagrams and Twistors to the one-loop Dilatation Operator in the SO(6) sector
Abstract
About 10 years ago Minahan and Zarembo made a remarkable discovery: the one-loop Dilatation Operator in the SO(6) sector of planar N=4 SYM can be identified with the Hamiltonian of an integrable spin chain. This one-loop Dilatation operator was obtained by computing a two-point correlation function at one loop, which is a completely off-shell quantity. Around the same time, Witten proposed a duality between N=4 SYM and twistor string theory, which initiated a revolution in the field of on-shell objects like scattering amplitudes. In this talk we illustrate that these techniques that have been sucessfully used for on-shell quantities can also be employed for the computation of off-shell quantities by computing the one-loop Dilatation Operator in the SO(6) sector. The first half of the talk will be dedicated to doing this calculation using MHV diagrams and the second half of the talk shows the computation in twistor space.
These two short talks will be followed by an informal afternoon session for those interested in further details of these approaches, and in form factors in Class Room C2 from 2-4.30 pm then from 4.30pm in N3.12. All are welcome.
Functors of points and moduli problems
Abstract
In algebraic and arithmetic geometry, there is the ubiquitous notion of a moduli space, which informally is a variety (or scheme) parametrising a class of objects of interest. My aim in this talk is to explain concretely what we mean by a moduli space, going through the functor-of-points formalism of Grothendieck. Time permitting, I may also discuss (informally!) a natural obstruction to the existence of moduli schemes, and how one can get around this problem by taking a 2-categorical point of view.
How Long is a Piece of Spacetime
Abstract
On November 25th 1915 Albert Einstein submitted his famous paper on the General Theory of Relativity. David Hilbert also derived the General Theory in November 1915 using quite different methods. In the same year Emmy Noether derived her remarkable ‘Noether’s Theorem’ which lies at the heart of much modern Physics. 1915 was a very good vintage indeed. We will take a brief walking tour of General Relativity using some of the ideas of Noether, Hilbert and Einstein to examine gravitational redshift, gravitational lensing, the impact of General Relativity on GPS systems and high precision atomic clocks, and Black holes all of which can be summarised by asking ‘how long is a piece of spacetime?’
Reduction Types of Abelian Varieties
Abstract
Much of the arithmetic behaviour of an elliptic curve can be understood by examining its mod p reduction at some prime p. In this talk, we will aim to explain some of the ways we can define the mod p reduction, and the classifications of which reduction types occur.
Topics to be covered include the classical reduction types (good/multiplicative/additive), the Kodaira-Neron reduction types that refine them, and the Raynaud parametrisation of a semistable abelian variety. Time permitting, we may also discuss joint work with Vladimir Dokchitser classifying the semistable reduction types of 2-dimensional abelian varieties.
Rough paths on manifolds revisited
Abstract
Abstract: We consider different notions of rough paths on manifolds and study some of the relations between these definitions. Furthermore, we explore extensions to manifolds modelled along infinite dimensional Banach spaces.
Random walks and Lévy processes as rough paths
Abstract
Abstract: We consider random walks and Lévy processes in the free nilpotent Lie group as rough paths. For any p > 1, we completely characterise (almost) all Lévy processes whose sample paths have finite p-variation, provide a Lévy-Khintchine formula for the characteristic function of the signature of a Lévy process treated as a rough path, and give sufficient conditions under which a sequence of random walks converges weakly to a Lévy process in rough path topologies. At the heart of our analysis is a criterion for tightness of p-variation for a collection of càdlàg strong Markov processes. We demonstrate applications of our results to weak convergence of stochastic flows.
14:15
AdS4 solutions of massive IIA from dyonic supergravity and their simple Chern-Simons duals
Abstract
It has been recently pointed out that maximal gauged supergravities in four dimensions often come in one-parameter families. The parameter measures the combination of electric and magnetic vectors that participate in the gauging. I will discuss the higher-dimensional origin of these dyonic gaugings, when the gauge group is chosen to be ISO(7). This gauged supergravity arises from consistent truncation of massive type IIA on the six-sphere, with its dyonically-gauging parameter identified with the Romans mass. The (AdS) vacua of the 4D supergravity give rise to new explicit AdS4 backgrounds of massive type IIA. I will also show that the 3D field theories dual to these AdS4 solutions are Chern-Simons-matter theories with a simple gauge group and level k also given by the Romans mass.
Effective behaviour of random media: From an error analysis to elliptic regularity theory
Abstract
14:15
Rogue waves in the open ocean — Non-linear walls of water
Abstract
There is wide interest in the oceanographic and engineering communities as to whether linear models are satisfactory for describing the largest and steepest waves in open ocean. This talk will give some background on the topic before describing some recent modelling. This concludes that non-linear physics produces only small increases in amplitude over that expected in a linear model — however, there are significant changes to the shape and structure of extreme wave-group caused by the non-linear physics.
oxDNA: A coarse-grained approach to model DNA
Abstract
Simulating the long time and length scales associated with DNA self-assembly
and DNA nanotechnology is not currently feasible with models at an atomic level
of detail. We, therefore, developed oxDNA a coarse-grained representation of
DNA that aims to capture the fundamental structural, thermodynamic and
mechanical properties of double-stranded and single-stranded DNA, which we have
subsequently applied to study a wide variety of DNA biophysical properties and
DNA nanotechnological systems.
More accurate optical measurements
Abstract
Lein’s confocal systems make accurate and precise measurements in many different applications. In applications where the object under test introduces variability and/or optical aberrations to the optical signal, the accuracy and precision may deteriorate. This technical challenge looks for mathematical solutions to improve the accuracy and precision of measurements made in such circumstances.
The presentation will outline the confocal principle, show “perfect” signals, give details of how we analyse such signals, then move on to less perfect signals and the effects on measurement accuracy and precision.
17:30
Real, p-adic, and motivic oscillatory integrals
Abstract
In the real, p-adic and motivic settings, we will present recent results on oscillatory integrals. In the reals, they are related to subanalytic functions and their Fourier transforms. In the p-adic and motivic case, there are furthermore transfer principles and applications in the Langlands program. This is joint work with Comte, Gordon, Halupczok, Loeser, Miller, Rolin, and Servi, in various combinations.
Branched Covers of Cube Complexes
Abstract
I will discuss the theory of branched covers of cube complexes as a method of hyperbolisation. I will show recent results using this technique. Time permitting I will discuss a form of Morse theory on simplicial complexes and show how these methods combined with the earlier methods allow one to create groups with interesting finiteness properties.
Prime number races with very many competitors
Abstract
The prime number race is the competition between different coprime residue classes mod $q$ to contain the most primes, up to a point $x$ . Rubinstein and Sarnak showed, assuming two $L$-function conjectures, that as $x$ varies the problem is equivalent to a problem about orderings of certain random variables, having weak correlations coming from number theory. In particular, as $q \rightarrow \infty$ the number of primes in any fixed set of $r$ coprime classes will achieve any given ordering for $\sim 1/r!$ values of $x$. In this talk I will try to explain what happens when $r$ is allowed to grow as a function of $q$. It turns out that one still sees uniformity of orderings in many situations, but not always. The proofs involve various probabilistic ideas, and also some harmonic analysis related to the circle method. This is joint work with Youness Lamzouri.
OCIAM Group Meeting - New singularities for Stokes waves
Abstract
Adaptivity and blow-up detection for nonlinear evolution PDEs
Abstract
I will review some recent work on the problem of reliable automatic detection of blow-up behaviour for nonlinear parabolic PDEs. The adaptive algorithms developed are based on rigorous conditional a posteriori error bounds. The use of space-time adaptivity is crucial in making the problem computationally tractable. The results presented are applicable to quite general spatial operators, rendering the approach potentially useful in informing respective PDE theory. The new adaptive algorithm is shown to accurately estimate the blow-up time of a number of problems, including ones exhibiting regional blow-up.
Why gradient flows of some energies good for defect equilibria are not good for dynamics, and an improvement
Abstract
energy but involving a conservation statement for topological charge of the line defect field for its evolution will be shown to succeed. This is joint work with Chiqun Zhang, graduate student at CMU.
16:00
Counter example using the Golod-Shafarevich inequality
Abstract
In 1964 Golod and Shafarevich discovered a powerful tool that gives a criteria for when a certain presentation defines an infinite dimensional algebra. In my talk I will assume the main machinery of the Golod-Shafarevich inequality for graded algebras and use it to provide counter examples to certain analogues of the Burnside problem in infinite dimensional algebras and infinite groups. Then, time dependent, I will define the Tarski number for groups relating to the Banach-Tarski paradox and show that we can using the G-S inequality show that the set of Tarski numbers is unbounded. Despite the fact we can only find groups of Tarski number 4, 5 and 6.
15:00
Algebraic Codes for Public Key Cryptography
Abstract
We present McEliece encryption scheme and some well-known proposals based on various families of error correcting codes. We introduce several methods for cryptanalysis in order to study the security of the presented proposals.
The Grothendieck-Riemann-Roch theorem and the Frobenius morphism
Abstract
Let p>0 be a prime number. We shall describe a short Frobenius-theoretic proof of the Adams-Riemann-Roch theorem for the p-th Adams operation, when the involved schemes live in characteristic p and the morphism is smooth. This result implies the Grothendieck-Riemann-Roch theorem for smooth morphisms in positive characteristic and the Hirzebruch-Riemann-Roch theorem in any characteristic. This is joint work with R. Pink.