Thu, 05 Nov 2015

16:00 - 17:00
L3

Acoustic liners in aircraft engines

Ed Brambley
(Cambridge)
Abstract

Noise limits are one of the major constraints when designing
aircraft engines.  Acoustic liners are fitted in almost all civilian
turbofan engine intakes, and are being considered for use elsewhere in a
bid to further reduce noise.  Despite this, models for acoustic liners
in flow have been rather poor until recently, with discrepancies of 10dB
or more.  This talk will show why, and what is being done to model them
better.  In the process, as well as mathematical modelling using
asymptotics, we will show that state of the art Computational
AeroAcoustics simulations leave a lot to be desired, particularly when
using optimized finite difference stencils.

Thu, 05 Nov 2015

12:00 - 13:00
L6

Ancient Solutions to Navier-Stokes Equations in Half Space

Tobias Barker
(University of Oxford)
Abstract

The relationship between the so-called ancient (backwards) solutions to the Navier-Stokes equations in the space or in a half space and the global well-posedness of initial boundary value problems for these equations will be explained. If time permits I will sketch details of an equivalence theorem and a proof of smoothness properties of mild bounded ancient solutions in the half space, which is a joint work with Gregory Seregin

Wed, 04 Nov 2015
16:00
C1

Isometries of CAT(0) Spaces

Giles Gardam
(Oxford)
Abstract

This talk will be an easy introduction to some CAT(0) geometry. Among other things, we'll see why centralizers in groups acting geometrically on CAT(0) spaces split (at least virtually). Time permitting, we'll see why having a geometric action on a CAT(0) space is not a quasi-isometry invariant.

 

Wed, 04 Nov 2015
15:00
L4

On the concrete hardness of Learning with Errors

Rachel Player
(Royal Holloway, University of London)
Abstract

The Learning with Errors (LWE) problem has become a central building block of modern cryptographic constructions. We will discuss hardness results for concrete instances of LWE. In particular, we discuss algorithms proposed in the literature and give the expected resources required to run them. We consider both generic instances of LWE as well as small secret variants. Since for several methods of solving LWE we require a lattice reduction step, we also review lattice reduction algorithms and propose a refined model for estimating their running times. We also give concrete estimates for various families of LWE instances, provide a Sage module for computing these estimates and highlight gaps in the knowledge about algorithms for solving the Learning with Errors problem.

Tue, 03 Nov 2015

16:00 - 17:00
C5

Equivalence relations for quadratic forms

Detlev Hoffmann
(Dortmund)
Abstract

We investigate equivalence relations for quadratic forms that can be expressed in terms of algebro-geometric properties of their associated quadrics, more precisely, birational, stably birational and motivic equivalence, and isomorphism of quadrics. We provide some examples and counterexamples and highlight some important open problems.

Tue, 03 Nov 2015

15:45 - 16:45
L4

Poles of maximal order of Igusa zeta functions

Johannes Nicaise
(Imperial)
Abstract

Igusa's p-adic zeta function $Z(s)$ attached to a polynomial $f$ in $N$ variables is a meromorphic function on the complex plane that encodes the numbers of solutions of the equation $f=0$ modulo powers of a prime $p$. It is expressed as a $p$-adic integral, and Igusa proved that it is rational in $p^{-s}$ using resolution of singularities and the change of variables formula. From this computation it is immediately clear that the order of a pole of $Z(s)$ is at most $N$, the number of variables in $f$. In 1999, Wim Veys conjectured that the only possible pole of order $N$ of the so-called topological zeta function of $f$ is minus the log canonical threshold of $f$. I will explain a proof of this conjecture, which also applies to the $p$-adic and motivic zeta functions. The proof is inspired by non-archimedean geometry and Mirror Symmetry, but the main technique that is used is the Minimal Model program in birational geometry. This talk is based on joint work with Chenyang Xu.

Tue, 03 Nov 2015

14:30 - 15:00
L5

Block Preconditioning for Incompressible Two-Phase Flow

Niall Bootland
(University of Oxford)
Abstract

Modelling two-phase, incompressible flow with level set or volume-of-fluid formulations results in a variable coefficient Navier-Stokes system that is challenging to solve computationally. In this talk I will present work from a recent InFoMM CDT mini-project which looked to adapt current preconditioners for one-phase Navier-Stokes flows. In particular we consider systems arising from the application of finite element methodology and preconditioners which are based on approximate block factorisations. A crucial ingredient is a good approximation of the Schur complement arising in the factorisation which can be computed efficiently.

Tue, 03 Nov 2015
14:30
L6

Transference for the Erdős–Ko–Rado theorem

Bhargav Narayanan
(University of Cambridge)
Abstract

The ErdősKoRado theorem is a central result in extremal set theory which tells us how large uniform intersecting families can be. In this talk, I shall discuss some recent results concerning the 'stability' of this result. One possible formulation of the ErdősKoRado theorem is the following: if $n \ge 2r$, then the size of the largest independent set of the Kneser graph $K(n,r)$ is $\binom{n-1}{r-1}$, where $K(n,r)$ is the graph on the family of $r$-element subsets of $\{1,\dots,n\}$ in which two sets are adjacent if and only if they are disjoint. The following will be the question of interest. Delete the edges of the Kneser graph with some probability, independently of each other: is the independence number of this random graph equal to the independence number of the Kneser graph itself? I shall discuss an affirmative answer to this question in a few different regimes. Joint work with Bollobás and Raigorodskii, and Balogh and Bollobás.

Tue, 03 Nov 2015

14:15 - 15:15
L4

Open invariants and crepant transformations

Renzo Cavalieri
(Colorado State)
Abstract

The question that the Crepant Resolution Conjecture (CRC) wants to address is: given an orbifold X that admits a repant resolution Y, can we systematically compare the Gromov-Witten theories of the two spaces? That this should happen was first observed by physicists and the question was imported into mathematics by Y.Ruan, who posited it as the search for an isomorphism in the quantum cohomologies of the two spaces. In the last fifteen years this question has evolved and found different formulations which various degree of generality and validity. Perhaps the most powerful approach to the CRC is through Givental's formalism. In this case, Coates, Corti, Iritani and Tseng propose that the CRC should consist of the natural comparison of geometric objects constructed from the GW potential fo the space. We explore this approach in the setting of open GW invariants. We formulate an open version of the CRC using this formalism, and make some verifications. Our approach is well tuned with Iritani's approach to the CRC via integral structures, and it seems to suggest that open invariants should play a prominent role in mirror symmetry. 

Tue, 03 Nov 2015

14:00 - 14:30
L5

Collocation-based hybrid numerical-asymptotic methods for high frequency wave scattering

David Hewett
(University of Oxford)
Abstract

Wave scattering problems arise in numerous applications in acoustics, electromagnetics and linear elasticity. In the boundary element method (BEM) one reformulates the scattering problem as an integral equation on the scatterer boundary, e.g. using Green’s identities, and then seeks an approximate solution of the boundary integral equation (BIE) from some finite-dimensional approximation space. The conventional choice is a space of piecewise polynomials; however, in the “high frequency” regime when the wavelength is small compared to the size of the scatterer, it is computationally expensive to resolve the highly oscillatory wave solution in this way. The hybrid numerical-asymptotic (HNA) approach aims to reduce the computational cost by enriching the BEM approximation space with oscillatory functions, carefully chosen to capture the high frequency asymptotic solution behaviour. To date, the HNA methodology has been implemented almost exclusively in a Galerkin variational framework. This has many attractive features, not least the possibility of proving rigorous convergence results, but has the disadvantage of requiring numerical evaluation of high dimensional oscillatory integrals. In this talk I will present the results of some investigations carried out with my MSc student Emile Parolin into collocation-based implementations, which involve lower-dimensional integrals, but appear harder to analyse in terms of convergence and stability.

Mon, 02 Nov 2015
17:00
L3

Non-Archimedean Analytic Geometry..etc.

Nicholas Wentzlaff
Abstract

I want to give an introduction into non-Archimedean Geometry, and show how Model Theory was used to prove the recent results of Hrushovski-Loeser on topological properties of analytic spaces. This may also be of interest with view towards Zilber's programme for syntax-semantics dualities.

Mon, 02 Nov 2015

16:00 - 17:00
C2

The Arithmetic of K3 Surfaces

Christopher Nicholls
(Oxford)
Abstract

The study of rational points on K3 surfaces has recently seen a lot of activity. We discuss how to compute the Picard rank of a K3 surface over a number field, and the implications for the Brauer-Manin obstruction.

Mon, 02 Nov 2015

16:00 - 17:00
L5

Sharp Trace-Sobolev inequalities of order 4

Antonio Ache
(Princeton University)
Abstract

We establish sharp Sobolev inequalities of order four on Euclidean $d$-balls for $d$ greater than or equal to four. When $d=4$, our inequality generalizes the classical second order Lebedev-Milin inequality on Euclidean $2$-balls. Our method relies on the use of scattering theory on hyperbolic $d$-balls. As an application, we charcaterize the extremals of the main term in the log-determinant formula corresponding to the conformal Laplacian coupled with the boundary Robin operator on Euclidean $4$-balls. This is joint work with Alice Chang. 

Mon, 02 Nov 2015

15:45 - 16:45
Oxford-Man Institute

: Pfaffians, 1-d particle systems and random matrices.

ROGER TRIBE
(University of Warwick)
Abstract

Abstract: Joint work with Oleg Zaboronsky (Warwick).

Some one dimensional nearest neighbour particle systems are examples of Pfaffian point processes - where all intensities are determined by a single kernel.In some cases these kernels have appeared in the random matrix literature (where the points are the positions of eigenvalues). We are attempting to use random matrix tools on the particle sytems, and particle tools on the random matrices.

 

 

Mon, 02 Nov 2015
15:45
L6

Graphical calculus for 3-dimensional TQFTs

Bruce Bartlett
(Oxford)
Abstract

Recent developments in 3-dimensional topological quantum field theory allow us to understand the vector spaces assigned to surfaces as spaces of string diagrams. In the Reshetikhin-Turaev model, these string diagrams live inside a handlebody bounding the surface, while in the Turaev-Viro model, they live on the surface itself. There is a "lifting map" from the former to the latter, which sheds new light on a number of constructions. Joint with Gerrit Goosen.

Mon, 02 Nov 2015

14:15 - 15:15
Oxford-Man Institute

Longest increasing path within the critical strip

MATHEW JOSEPH
(University of Sheffield)
Abstract

Abstract:   Consider the square $[0,n]^2$ with points from a Poisson point process of intensity 1 distributed within it. In a seminal work, Baik, Deift and Johansson proved that the number of points $L_n$ (length) on a maximal increasing path (an increasing path that contains the most number of points), when properly centered and scaled, converges to the Tracy-Widom distribution. Later Johansson showed that all maximal paths lie within the strip of width $n^{\frac{2}{3} +\epsilon}$ around the diagonal with probability tending to 1 as $n \to \infty$. We shall discuss recent work on the Gaussian behaviour of the length $L_n^{(\gamma)}$ of a maximal increasing path restricted to lie within a strip of width $n^{\gamma}, \gamma< \frac{2}{3}$.

 

Mon, 02 Nov 2015
14:15
L4

On the principal Ricci curvatures of a Riemannian 3-manifold

Amir Aazami
(IPMU)
Abstract
Milnor has shown that three-dimensional Lie groups with left invariant Riemannian metrics furnish examples of 3-manifolds with principal Ricci curvatures of fixed signature --- except for the signatures (-,+,+), (0,+,-), and (0,+,+).  We examine these three cases on a Riemannian 3-manifold, and prove global obstructions in certain cases.  For example, if the manifold is closed, then the signature (-,+,+) is not globally possible if it is of the form -µ,f,f, with µ a positive constant and f a smooth function that never takes the values 0,-µ (this generalizes a result by Yamato '91).  Similar obstructions for the other cases will also be discussed.  Our methods of proof rely upon frame techniques inspired by the Newman-Penrose formalism.  Thus, we will close by turning our attention to four dimensions and Lorentzian geometry, to uncover a relation between null vector fields and exact symplectic forms, with relations to Weinstein structures. 
Mon, 02 Nov 2015

12:00 - 13:00
L5

Heterotic Superpotentials and Moduli

Eirik Svanes
(Pierre and Marie Curie University)
Abstract
We review some recent progress in computing massless spectra 

and moduli in heterotic string compactifications. In particular, it was   

recently shown that the heterotic Bianchi Identity can be accounted 

for by the construction of a holomorphic operator. Mathematically,

this corresponds to a holomorphic double extension. Moduli can 

then be computed in terms of cohomologies of this operator. We 

will see how the same structure can be derived form a 

Gukov-Vafa-Witten type superpotential. We note a relation between 

the lifted complex structure and bundle moduli, and cover some 

examples, and briefly consider obstructions and Yukawa 

couplings arising from these structures.
 
 
 
 
 
Fri, 30 Oct 2015

16:00 - 17:00
L1

North meets South Colloquium

Pavel Safronov + Ian Griffiths
(Mathematical Institute, Oxford)
Abstract

Derived geometry and approximations - Pavel Safronov

Derived geometry has been developed to address issues arising in geometry from a consideration of spaces with intrinsic symmetry or some singular spaces arising as complicated intersections.  It has been successful both in pure mathematics and theoretical physics where derived geometric structures appear in quantum gauge field theories such as the theory of quantum electrodynamics.  Recently Lurie has developed a transparent approach to deformation theory, i.e. the theory of approximations of algebraic structures, using the language of derived algebraic geometry.  I will motivate the theory on a basic example and explain one of the theorems in the subject.

_______________________________

How magnets and mathematics can help solve the current water crisis - Ian Griffiths

Although water was once considered an almost unlimited resource, population growth, drought and contamination are straining our water supplies.  Up to 70% of deaths in Bangladesh are currently attributed to arsenic contamination, highlighting the essential need to develop new and effective ways of purifying water.

Since arsenic binds to iron oxide, magnets offer one such way of removing arsenic by simply pulling it from the water.  For larger contaminants, filters with a spatially varying porosity can remove particles through selective sieving mechanisms.

Here we develop mathematical models that describe each of these scenarios, show how the resulting models give insight into the design requirements for new purification methods, and present methods for implementing these ideas with industry.

Fri, 30 Oct 2015

14:00 - 15:00
L3

Hybrid modelling of stochastic chemical kinetics

Dr Kostas Zygalakis
(School of Mathematics University of Southampton)
Abstract

It is well known that stochasticity can play a fundamental role in 
various biochemical processes, such as cell regulatory networks and 
enzyme cascades. Isothermal, well-mixed systems can be adequately 
modeled by Markov processes and, for such systems, methods such as 
Gillespie's algorithm are typically employed. While such schemes are 
easy to implement and are exact, the computational cost of simulating 
such systems can become prohibitive as the frequency of the reaction 
events increases. This has motivated numerous coarse grained schemes, 
where the ``fast'' reactions are approximated either using Langevin 
dynamics or deterministically.  While such approaches provide a good 
approximation for systems where all reactants are present in large 
concentrations,  the approximation breaks down when the fast chemical 
species exist in small concentrations,  giving rise to significant 
errors in the simulation.  This is particularly problematic when using 
such methods to compute statistics of extinction times for chemical 
species, as well as computing observables of cell cycle models.  In this 
talk, we present a hybrid scheme for simulating well-mixed stochastic 
kinetics, using Gillepsie--type dynamics to simulate the network in 
regions of low reactant concentration, and chemical langevin dynamics 
when the concentrations of all species is large.  These two regimes are 
coupled via an intermediate region in which a ``blended'' jump-diffusion 
model is introduced.  Examples of gene regulatory networks involving 
reactions occurring at multiple scales, as well as a cell-cycle model 
are simulated, using the exact and hybrid scheme, and compared, both in 
terms weak error, as well as computational cost.

This is joint work with A. Duncan (Imperial) and R. Erban (Oxford)

Fri, 30 Oct 2015

13:00 - 14:00
L6

PhD student talk (On robust pricing--hedging duality in continuous time)

Zhaoxu Hu
(Oxford University)
Abstract

We pursue robust approach to pricing and hedging in mathematical finance. We consider a continuous time setting in which some underlying assets and options, with continuous paths, are available for dynamic trading and a further set of European options, possibly with varying maturities, is available for static trading. Motivated by the notion of prediction set in Mykland [03], we include in our setup modelling beliefs by allowing to specify a set of paths to be considered, e.g. super-replication of a contingent claim is required only for paths falling in the given set. Our framework thus interpolates between model--independent and model--specific settings and allows to quantify the impact of making assumptions or gaining information. We obtain a general pricing-hedging duality result: the infimum over superhedging prices is equal to supremum over calibrated martingale measures. In presence of non-trivial beliefs, the equality is between limiting values of perturbed problems. In particular, our results include the martingale optimal transport duality of Dolinsky and Soner [13] and extend it to multiple dimensions and multiple maturities.