Thu, 10 Feb 2005
14:00
Rutherford Appleton Laboratory, nr Didcot

Preconditioning for eigenvalue problems: ideas, algorithms, error analysis

Dr Eugene Ovtchinnikov
(University of Westminster)
Abstract

The convergence of iterative methods for solving the linear system Ax = b with a Hermitian positive definite matrix A depends on the condition number of A: the smaller the latter the faster the former. Hence the idea to multiply the equation by a matrix T such that the condition number of TA is much smaller than that of A. The above is a common interpretation of the technique known as preconditioning, the matrix T being referred to as the preconditioner for A.
The eigenvalue computation does not seem to benefit from the direct application of such a technique. Indeed, what is the point in replacing the standard eigenvalue problem Ax = λx with the generalized one TAx = λTx that does not appear to be any easier to solve? It is hardly surprising then that modern eigensolvers, such as ARPACK, do not use preconditioning directly. Instead, an option is provided to accelerate the convergence to the sought eigenpairs by applying spectral transformation, which generally requires the user to supply a subroutine that solves the system (A−σI)y = z, and it is entirely up to the user to employ preconditioning if they opt to solve this system iteratively.
In this talk we discuss some alternative views on the preconditioning technique that are more general and more useful in the convergence analysis of iterative methods and that show, in particular, that the direct preconditioning approach does make sense in eigenvalue computation. We review some iterative algorithms that can benefit from the direct preconditioning, present available convergence results and demonstrate both theoretically and numerically that the direct preconditioning approach has advantages over the two-level approach. Finally, we discuss the role that preconditioning can play in the a posteriori error analysis, present some a posteriori error estimates that use preconditioning and compare them with commonly used estimates in terms of the Euclidean norm of residual.

Mon, 07 Feb 2005
15:45
DH 3rd floor SR

Diffusions in random environment and ballistic behavior

Dr Tom Schmitz
(Department of Mathematics, Switzerland)
Abstract

We introduce conditions in the spirit of $(T)$ and $(T')$ of the discrete setting, that imply, when $d \geq 2$, a law of large numbers with non-vanishing limiting velocity (which we refer to as 'ballistic behavior') and a central limit theorem with non-degenerate covariance matrix. As an application of our results, we consider the class of diffusions where the diffusion matrix is the identity, and give a concrete criterion on the drift term under which the diffusion in random environment exhibits ballistic behavior.

Thu, 03 Feb 2005
14:00
Comlab

Computing ratings for eigenvectors

Professor Richard Brent
(University of Oxford)
Abstract

We consider the problem of computing ratings using the results of games (such as chess) played between a set of n players, and show how this problem can be reduced to computing the positive eigenvectors corresponding to the dominant eigenvalues of certain n by n matrices. There is a close connection with the stationary probability distributions of certain Markov chains. In practice, if n is large, then the matrices involved will be sparse, and the power method may be used to solve the eigenvalue problems efficiently.

Mon, 31 Jan 2005
15:45
DH 3rd floor SR

Joint work with Thomas Duquesne on Growth of Levy forests

Dr Matthias Winkel
(Department of Statistics, Oxford)
Abstract

It is well-known that the only space-time scaling limits of Galton-Watson processes are continuous-state branching processes. Their genealogical structure is most explicitly expressed by discrete trees and R-trees, respectively. Weak limit theorems have been recently established for some of these random trees. We study here a Markovian forest growth procedure that allows to construct the genealogical forest of any continuous-state branching process with immigration as an a.s. limit of Galton-Watson forests with edge lengths. Furthermore, we are naturally led to continuous forests with edge lengths. Another strength of our method is that it yields results in the general supercritical case that was excluded in most of the previous literature.

Fri, 28 Jan 2005
14:15
DH 3rd floor SR

The Malliavin gradient method for calibration of stochastic volatility
models

Christian Ewald
Abstract

We discuss the application of gradient methods to calibrate mean reverting

stochastic volatility models. For this we use formulas based on Girsanov

transformations as well as a modification of the Bismut-Elworthy formula to

compute the derivatives of certain option prices with respect to the

parameters of the model by applying Monte Carlo methods. The article

presents an extension of the ideas to apply Malliavin calculus methods in

the computation of Greek's.

Thu, 27 Jan 2005
15:00
Rutherford Appleton Laboratory, nr Didcot

The use of coupled solvers for complex multiphase and reacting flows

Dr Ian Jones
(ANSYS Europe)
Abstract

Many industrial flow problems, expecially in the minerals and process

industries, are very complex, with strong interactions between phases

and components, and with very different length and time scales. This

presentation outlines the algorithms used in the CFX-5 software, and

describes the extension of its coupled solver approach to some

multi-scale industrial problems. including Population Balance modelling

to predict size distributions of a disperse phase. These results will be

illustrated on some practical industrial problems.