Tue, 06 Mar 2012

14:30 - 15:30
L3

Random graphs on spaces of negative curvature

Nikolaos Fountoulakis (Birmingham)
Abstract

Random geometric graphs have been well studied over the last 50 years or so. These are graphs that

are formed between points randomly allocated on a Euclidean space and any two of them are joined if

they are close enough. However, all this theory has been developed when the underlying space is

equipped with the Euclidean metric. But, what if the underlying space is curved?

The aim of this talk is to initiate the study of such random graphs and lead to the development of

their theory. Our focus will be on the case where the underlying space is a hyperbolic space. We

will discuss some typical structural features of these random graphs as well as some applications,

related to their potential as a model for networks that emerge in social life or in biological

sciences.

Tue, 06 Mar 2012

14:00 - 15:00
SR1

(HoRSe seminar) Joyce-Song wall-crossing as an asymptotic expansion I

Jacopo Stoppa
(Cambridge)
Abstract

Joyce and Song expressed the wall-crossing behaviour of Donaldson-Thomas invariants using a sum over graphs. Joyce expected that these would have something to do with the Feynman diagrams of suitable physical theories. I will show how this can be achieved in the framework for wall-crossing proposed by Gaiotto, Moore and Neitzke. JS diagrams emerge from small corrections to a hyperkahler metric. The basics of GMN theory will be explained during the

first talk.

Tue, 06 Mar 2012
13:30
DH 1st floor SR

Zonal jets on Jupiter as modelled by the quasigeostrophic limit of the thermal shallow water equation

Emma Warneford
(OCIAM)
Abstract

Large-scale zonal jets are observed in a wide range of geophysical and astrophysical flows; most strikingly in the atmospheres of the Jovian gas giant planets. Jupiter's upper atmosphere is highly turbulent, with many small vortices, and strong westerly winds at the equator. We consider the thermal shallow water equations as a model for Jupiter's upper atmosphere. Originally proposed for the terrestrial atmosphere and tropical oceans, this model extends the conventional shallow water equations by allowing horizontal temperature variations with a modified Newtonian cooling for the temperature field. We perform numerical simulations that reproduce many of the key features of Jupiter’s upper atmosphere. However, the simulations take a long time to run because their time step is severely constrained by the inertia-gravity wave speed. We filter out the inertia-gravity waves by forming the quasigeostrophic limit, which describes the rapidly rotating (small Rossby number) regime. We also show that the quasigeostrophic energy equation is the quasigeostrophic limit of the thermal shallow water pseudo-energy equation, analogous to the derivation of the acoustic energy equation from gas dynamics. We perform numerical simulations of the quasigeostrophic equations, which again reproduce many of the key features of Jupiter’s upper atmosphere. We gain substantial performance increases by running these simulations on graphical processing units (GPUs).

Tue, 06 Mar 2012
10:00
SR1

Generalized Kahler structures on moduli space of instantons

Gil Cavalcanti
Abstract

We show how the reduction procedure for generalized Kahler  
structures can be used to recover Hitchin's results about the  
existence of a generalized Kahler structure on the moduli space of  
instantons on bundle over a generalized Kahler manifold. In this setup  
the proof follows closely the proof of the same claim for the Kahler  
case and clarifies some of the stranger considerations from Hitchin's  
proof.

Mon, 05 Mar 2012

17:00 - 18:00
Gibson 1st Floor SR

Solenoidal Lipschitz truncation and applications in fluid mechanics

Lars Diening
(University of Munich)
Abstract

We consider the stationary flow of Prandtl-Eyring fluids in two

dimensions. This model is a good approximation of perfect plasticity.

The corresponding potential is only slightly super linear. Thus, many

severe problems arise in the existence theory of weak solutions. These

problems are overcome by use of a divergence free Lipschitz

truncation. As a second application of this technique, we generalize

the concept of almost harmonic functions to the Stokes system.

Mon, 05 Mar 2012

15:45 - 16:45
L3

Unital associahedra and homotopy unital homotopy associative algebras

Andy Tonks
(London Metropolitan University)
Abstract

The classical associahedra are cell complexes, in fact polytopes,

introduced by Stasheff to parametrize the multivariate operations

naturally occurring on loop spaces of connected spaces.

They form a topological operad $ Ass_\infty $ (which provides a resolution

of the operad $ Ass $ governing spaces-with-associative-multiplication)

and the complexes of cellular chains on the associahedra form a dg

operad governing $A_\infty$-algebras (that is, a resolution of the

operad governing associative algebras).

In classical applications it was not necessary to consider units for

multiplication, or it was assumed units were strict. The introduction

of non-strict units into the picture was considerably harder:

Fukaya-Ono-Oh-Ohta introduced homotopy units for $A_\infty$-algebras in

their work on Lagrangian intersection Floer theory, and equivalent

descriptions of the dg operad for homotopy unital $A_\infty$-algebras

have now been given, for example, by Lyubashenko and by Milles-Hirsch.

In this talk we present the "missing link": a cellular topological

operad $uAss_\infty$ of "unital associahedra", providing a resolution

for the operad governing topological monoids, such that the cellular

chains on $uAss_\infty$ is precisely the dg operad of

Fukaya-Ono-Oh-Ohta.

(joint work with Fernando Muro, arxiv:1110.1959, to appear Forum Math)

Mon, 05 Mar 2012

15:45 - 16:45
Oxford-Man Institute

How does a uniformly sampled Markov chain behave ?

CHARLES BORDENAVE
(University of Toulouse)
Abstract

This is joint work with P. Caputo and D. Chafai. In this talk, we
will consider various probability distributions on the set of stochastic
 matrices with n states and on the set of Laplacian/Kirchhoff
matrices on n states. They will arise naturally from the conductance model on
n states with i.i.d conductances. With the help of random matrix
theory, we will study the spectrum of these processes.

Mon, 05 Mar 2012

12:00 - 13:00
L3

Three-sphere partition function, counterterms and supergravity

Cyril Closset
(Weizmann Institute)
Abstract

The partition function of 3d N=2 superconformal theories on the

3-sphere can be computed exactly by localization methods. I will explain

some sublteties associated to that important result. As a by-product, this

analysis establishes the so-called F-maximization principle for N=2 SCFTs in

3d: the exact superconformal R-charge maximizes the 3-sphere free energy

F=-log Z.

Mon, 05 Mar 2012

11:00 - 12:00
L3

Cactus products and Outer space with generalised boundaries

James Griffin
(Cambridge)
Abstract

A cactus product is much like a wedge product of pointed spaces, but instead of being uniquely defined there is a moduli space of possible cactus products. I will discuss how this space can be interpreted geometrically and how its combinatorics calculates the homology of the automorphism group of a free product with no free group factors. Then I will reinterpret the moduli space with Outer space in mind: the lobes of the cacti now behave like boundaries and our free products can now include free group factors.

Fri, 02 Mar 2012
16:30
L2

Mathematics of Phase Transitions From pde' s to many particle systems and back?

Stephan Luckhaus
Abstract

What is a phase transition?

The first thing that comes to mind is boiling and freezing of water. The material clearly changes its behaviour without any chemical reaction. One way to arrive at a mathematical model is to associate different material behavior, ie., constitutive laws, to different phases. This is a continuum physics viewpoint, and when a law for the switching between phases is specified, we arrive at pde problems. The oldest paper on such a problem by Clapeyron and Lame is nearly 200 years old; it is basically on what has later been called the Stefan problem for the heat equation.

The law for switching is given e.g. by the melting temperature. This can be taken to be a phenomenological law or thermodynamically justified as an equilibrium condition.

The theory does not explain delayed switching (undercooling) and it does not give insight in structural differences between the phases.

To some extent the first can be explained with the help of a free energy associated with the interface between different phases. This was proposed by Gibbs, is relevant on small space scales, and leads to mean curvature equations for the interface – the so-called Gibbs Thompson condition.

The equations do not by themselves lead to a unique evolution. Indeed to close the resulting pde’s with a reasonable switching or nucleation law is an open problem.

Based on atomistic concepts, making use of surface energy in a purely phenomenological way, Becker and Döring developed a model for nucleation as a kinetic theory for size distributions of nuclei. The internal structure of each phase is still not considered in this ansatz.

An easier problem concerns solid-solid phase transitions. The theory is furthest developped in the context of equilibrium statistical mechanics on lattices, starting with the Ising model for ferromagnets. In this context phases correspond to (extremal) equilibrium Gibbs measures in infinite volume. Interfacial free energy appears as a finite volume correction to free energy.

The drawback is that the theory is still basically equilibrium and isothermal. There is no satisfactory theory of metastable states and of local kinetic energy in this framework.

Fri, 02 Mar 2012
14:15
DH 1st floor SR

Best Gain Loss Ratio in Continuous Time

Sara Biagini
(Unipi)
Abstract

The use of gain-loss ratio as a measure of attractiveness has been

introduced by Bernardo and Ledoit. In their well-known paper, they

show that gain-loss ratio restrictions have a dual representation in

terms of restricted pricing kernels.

In spite of its clear financial significance, gain-loss ratio has

been largely ignored in the mathematical finance literature, with few

exceptions (Cherny and Madan, Pinar). The main reason is intrinsic

lack of good mathematical properties. This paper aims to be a

rigorous study of gain-loss ratio and its dual representations

in a continuous-time market setting, placing it in the context of

risk measures and acceptability indexes. We also point out (and

correctly reformulate) an erroneous statement made by Bernardo and

Ledoit in their main result. This is joint work with M. Pinar.

Fri, 02 Mar 2012

10:00 - 13:30
DH 1st floor SR

"Pattern of Life" and traffic

Charles Offer
(Thales UK)
Abstract

'Pattern-of-life' is a current buzz-word in sensor systems. One aspect to this is the automatic estimation of traffic flow patterns, perhaps where existing road maps are not available. For example, a sensor might measure the position of a number of vehicles in 2D, with a finite time interval between each observation of the scene. It is desired to estimate the time-average spatial density, current density, sources and sinks etc. Are there practical methods to do this without tracking individual vehicles, given that there may also be false 'clutter' detections, the density of vehicles may be high, and each vehicle may not be detected in every timestep? And what if the traffic flow has periodicity, e.g. variations on the timescale of a day?

Thu, 01 Mar 2012

17:00 - 18:00
L3

Imaginaries in valued fields with analytic structure

Dugald Macpherson (Leeds)
Abstract

I will give an overview of the description of imaginaries in algebraically closed (and some other) valued fields, and then discuss the related issue for valued fields with analytic structure (in the sense of Lipshitz-Robinson, and Denef – van Den Dries). In particular, I will describe joint work with Haskell and Hrushovski showing that in characteristic 0, elimination of imaginaries in the `geometric sorts’ of ACVF no longer holds if restricted exponentiation is definable.

Thu, 01 Mar 2012

16:00 - 17:00
L3

Explicit rational points on elliptic curves

Alan Lauder
(Oxford)
Abstract

I will discuss an efficient algorithm for computing certain special values of p-adic L-functions, giving an application to the explicit construction of

rational points on elliptic curves.

Thu, 01 Mar 2012

16:00 - 17:00
DH 1st floor SR

Breakup of Spiralling Liquid Jets

Jamal Uddin
(Birmingham)
Abstract

The industrial prilling process is amongst the most favourite technique employed in generating monodisperse droplets. In such a process long curved jets are generated from a rotating drum which in turn breakup and from droplets. In this talk we describe the experimental set-up and the theory to model this process. We will consider the effects of changing the rheology of the fluid as well as the addition of surface agents to modify breakup characterstics. Both temporal and spatial instability will be considered as well as nonlinear numerical simulations with comparisons between experiments.

Thu, 01 Mar 2012

14:00 - 15:00
Gibson Grd floor SR

Two-Grid hp-Adaptive Discontinuous Galerkin Finite Element Methods for Second-Order Quasilinear Elliptic PDEs

Professor Paul Houston
(University of Nottingham)
Abstract

In this talk we present an overview of some recent developments concerning the a posteriori error analysis and adaptive mesh design of $h$- and $hp$-version discontinuous Galerkin finite element methods for the numerical approximation of second-order quasilinear elliptic boundary value problems. In particular, we consider the derivation of computable bounds on the error measured in terms of an appropriate (mesh-dependent) energy norm in the case when a two-grid approximation is employed. In this setting, the fully nonlinear problem is first computed on a coarse finite element space $V_{H,P}$. The resulting 'coarse' numerical solution is then exploited to provide the necessary data needed to linearise the underlying discretization on the finer space $V_{h,p}$; thereby, only a linear system of equations is solved on the richer space $V_{h,p}$. Here, an adaptive $hp$-refinement algorithm is proposed which automatically selects the local mesh size and local polynomial degrees on both the coarse and fine spaces $V_{H,P}$ and $V_{h,p}$, respectively. Numerical experiments confirming the reliability and efficiency of the proposed mesh refinement algorithm are presented.

Thu, 01 Mar 2012

13:00 - 14:00
L3

Applications of non-linear analysis to geometry

Robert Clancy
Abstract

I will claim (and maybe show) that a lot of problems in differential geometry can be reformulated in terms of non-linear elliptic differential operators. After reviewing the theory of linear elliptic operators, I will show what can be said about the non-linear setting.