Mon, 01 Nov 2021
14:15
L4

Stability conditions for polarised varieties

Ruadhaí Dervan
(Cambridge)
Abstract

A central theme of complex geometry is the relationship between differential-geometric PDEs and algebro-geometric notions of stability. Examples include Hermitian Yang-Mills connections and Kähler-Einstein metrics on the PDE side, and slope stability and K-stability on the algebro-geometric side. I will describe a general framework associating geometric PDEs on complex manifolds to notions of stability, and will sketch a proof showing that existence of solutions is equivalent to stability in a model case. The framework can be seen as an analogue in the setting of varieties of Bridgeland's stability conditions on triangulated categories.

Mon, 01 Nov 2021
12:45
Virtual

Relations between 6d and 4d SCFTs -- VIRTUAL!

Evyatar Sabag
(Oxford University)
Abstract

We will review how one can find families of 4d N=1 SCFTs starting from known 6d (1,0) SCFTs. 

Then we will discuss a relation between 6d RG-flows and 4d RG-flows, where the 4d RG-flow relates 4d N=1 models constructed from compactification of 6d (1,0) SCFTs related by the 6d RG-flow. We will show how we can utilize such a relation to find many "Lagrangians" for strongly coupled 4d models. Relating 6d SCFTs to 4d models as mentioned above will result in geometric reasoning behind some 4d phenomena such as dualities and symmetry enhancement.

Such a program generates a large database of known 4d N=1 SCFTs with many interrelations one can use in future efforts to construct 4d N=1 SCFTs from string theory directly.

Fri, 29 Oct 2021

16:00 - 17:00
L1

Applying for academic jobs

Edwina Yeo and Jay Swar
(Mathematical Institute)
Abstract

This session will take place live in L1 and online. A Teams link will be shared 30 minutes before the session begins.

Fri, 29 Oct 2021
16:00
N4.01

A microscopic expansion for superconformal indices

Ji Hoon Lee
(Perimeter Institute)
Further Information

It is also possible to join online via Zoom.

Abstract

I discuss a novel expansion of superconformal indices of U(N) gauge theories at finite N. When a holographic description is available, the formula expresses the index as a sum over stacks of "giant graviton" branes in the dual string theory. Surprisingly, the expansion turns out to be exact: the sum over strings and branes seems to capture the degeneracy of states expected from saddle geometries such as BPS black holes, while also reproducing the correct degeneracies at lower orders of charges. Based on 2109.02545 with D. Gaiotto.

Fri, 29 Oct 2021

15:00 - 16:00
Virtual

Modeling shapes and fields: a sheaf theoretic perspective

Sayan Mukherjee
(Duke University)
Abstract

We will consider modeling shapes and fields via topological and lifted-topological transforms. 

Specifically, we show how the Euler Characteristic Transform and the Lifted Euler Characteristic Transform can be used in practice for statistical analysis of shape and field data. The Lifted Euler Characteristic is an alternative to the. Euler calculus developed by Ghrist and Baryshnikov for real valued functions. We also state a moduli space of shapes for which we can provide a complexity metric for the shapes. We also provide a sheaf theoretic construction of shape space that does not require diffeomorphisms or correspondence. A direct result of this sheaf theoretic construction is that in three dimensions for meshes, 0-dimensional homology is enough to characterize the shape.

Fri, 29 Oct 2021

14:00 - 15:00
L3

Design and control of biochemical reaction networks

Dr Tomislav Plesa
(University of Cambridge)
Abstract

Many scientific questions in biology can be formulated as a direct problem:

given a biochemical system, can one deduce some of its properties? 

For example, one might be interested in deducing equilibria of a given intracellular network.  On the other hand, one might instead be interested in designing an intracellular network with specified equilibria. Such scientific tasks take the form of inverse problems:
given a property, can one design a biochemical system that displays this property? 

Given a biochemical system, can one embed additional molecular species and reactions into the original system to control some of its properties?
These questions are at the heart of the emerging field of synthetic biology, where it has recently become possible to systematically realize dynamical systems using molecules.  Furthermore, addressing these questions for man-made synthetic systems may also shed light on how evolution has overcome similar challenges for natural systems.  In this talk, I will focus on the inverse problems, and outline some of the results and challenges which are important when biochemical systems are designed and controlled.

Fri, 29 Oct 2021

14:00 - 15:00
South Mezz Circulation
Thu, 28 Oct 2021

16:00 - 17:00
L3

Optimal bailout strategies and the drift controlled supercooled Stefan problem

CHRISTOPH REISINGER
(University of Oxford)
Abstract

We consider the problem faced by a central bank which bails out distressed financial institutions that pose systemic risk to the banking sector. In a structural default model with mutual obligations, the central agent seeks to inject a minimum amount of cash to a subset of the entities in order to limit defaults to a given proportion of entities. We prove that the value of the agent's control problem converges as the number of defaultable agents goes to infinity, and it satisfies  a drift controlled version of the supercooled Stefan problem. We compute optimal strategies in feedback form by solving numerically a forward-backward coupled system of PDEs. Our simulations show that the agent's optimal strategy is to subsidise banks whose asset values lie in a non-trivial time-dependent region. Finally, we study a linear-quadratic version of the model where instead of the losses, the agent optimises a terminal loss function of the asset values. In this case, we are able to give semi-analytic strategies, which we again illustrate numerically. Joint work with Christa Cuchiero and Stefan Rigger.

Thu, 28 Oct 2021
14:00
Virtual

Randomized FEAST Algorithm for Generalized Hermitian Eigenvalue Problems with Probabilistic Error Analysis

Agnieszka Międlar
(University of Kansas)
Further Information

This talk is hosted by the Computational Mathematics Group of the Rutherford Appleton Laboratory.

Abstract

Randomized NLA methods have recently gained popularity because of their easy implementation, computational efficiency, and numerical robustness. We propose a randomized version of a well-established FEAST eigenvalue algorithm that enables computing the eigenvalues of the Hermitian matrix pencil $(\textbf{A},\textbf{B})$ located in the given real interval $\mathcal{I} \subset [\lambda_{min}, \lambda_{max}]$. In this talk, we will present deterministic as well as probabilistic error analysis of the accuracy of approximate eigenpair and subspaces obtained using the randomized FEAST algorithm. First, we derive bounds for the canonical angles between the exact and the approximate eigenspaces corresponding to the eigenvalues contained in the interval $\mathcal{I}$. Then, we present bounds for the accuracy of the eigenvalues and the corresponding eigenvectors. This part of the analysis is independent of the particular distribution of an initial subspace, therefore we denote it as deterministic. In the case of the starting guess being a Gaussian random matrix, we provide more informative, probabilistic error bounds. Finally, we will illustrate numerically the effectiveness of all the proposed error bounds.

 

---

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 28 Oct 2021

12:00 - 13:00
C1

Symmetry breaking and pattern formation for local/nonlocal interaction functionals

Sara Daneri
(Gran Sasso Science Institute GSSI)
Abstract

In this talk I will review some recent results obtained in collaboration with E. Runa and A. Kerschbaum on the one-dimensionality of the minimizers
of a family of continuous local/nonlocal interaction functionals in general dimension. Such functionals have a local term, typically the perimeter or its Modica-Mortola approximation, which penalizes interfaces, and a nonlocal term favouring oscillations which are high in frequency and in amplitude. The competition between the two terms is expected by experiments and simulations to give rise to periodic patterns at equilibrium. Functionals of this type are used  to model pattern formation, either in material science or in biology. The difficulty in proving the emergence of such structures is due to the fact that the functionals are symmetric with respect to permutation of coordinates, while in more than one space dimensions minimizers are one-dimesnional, thus losing the symmetry property of the functionals. We will present new techniques and results showing that for two classes of functionals (used to model generalized anti-ferromagnetic systems, respectively  colloidal suspensions), both in sharp interface and in diffuse interface models, minimizers are one-dimensional and periodic, in general dimension and also while imposing a nontrivial volume constraint.

Thu, 28 Oct 2021

12:00 - 13:00
L3

Active Matter and Transport in Living Cells

Camille Duprat
(LadHyX Ecole Polytechnique)
Further Information

Camille is mostly interested in problems involving the coupling of capillary-driven and low Reynolds number flows and elastic structures, especially from an experimental point of view.

Publications can be found here

Abstract

The organized movement of intracellular material is part of the functioning of cells and the development of organisms. These flows can arise from the action of molecular machines on the flexible, and often transitory, scaffoldings of the cell. Understanding phenomena in this realm has necessitated the development of new simulation tools, and of new coarse-grained mathematical models to analyze and simulate. In that context, I'll discuss how a symmetry-breaking "swirling" instability of a motor-laden cytoskeleton may be an important part of the development of an oocyte, modeling active material in the spindle, and what models of active, immersed polymers tell us about chromatin dynamics in the nucleus.

Thu, 28 Oct 2021
11:30
Virtual

Martin's Maximum^++ implies the P_max axiom (*) -- Part I

Ralf Schindler
(University of Münster)
Abstract

Forcing axioms spell out the dictum that if a statement can be forced, then it is already true. The P_max axiom (*) goes beyond that by claiming that if a statement is consistent, then it is already true. Here, the statement in question needs to come from a resticted class of statements, and "consistent" needs to mean "consistent in a strong sense". It turns out that (*) is actually equivalent to a forcing axiom, and the proof is by showing that the (strong) consistency of certain theories gives rise to a corresponding notion of forcing producing a model of that theory. Our result builds upon earlier work of R. Jensen and (ultimately) Keisler's "consistency properties".

(This is Part I of a two-part talk.)

Wed, 27 Oct 2021

16:00 - 17:00
C5

Finiteness properties of groups

Sam Fisher
(University of Oxford)
Abstract

Finiteness properties of groups provide various generalisations of the properties "finitely generated" and "finitely presented." We will define different types of finiteness properties and discuss Bestvina-Brady groups as they provide examples of groups with interesting combinations of finiteness properties.

Wed, 27 Oct 2021

14:00 - 15:00
L5

Calabi-Yau Modularity and Black Holes

Pyry Kuusela
Abstract

One of the consequences of Wiles' proof of Fermat's Last Theorem is that elliptic curves over rational numbers can be associated with modular forms, whose Fourier coefficients essentially count points on the curve. Generalisation of this modularity to higher dimensional varieties is a very interesting open question. In this talk I will give a physicist's view of Calabi-Yau modularity. Starting with a very simplified overview of some number theoretic background related to the Langlands program, I relate some of this theory to black holes in IIB/A string theories compactified on Calabi-Yau threefolds. It is possible to associate modular forms to certain such black holes. We can then ask whether these modular forms have a physical interpretation as, for example, counting black hole microstates. In an attempt to answer this question, we derive a formula for fully instanton-corrected black hole entropy, which gives an interesting hint of this counting. The talk is partially based on recent work arXiv:2104.02718 with P. Candelas and J. McGovern.

Wed, 27 Oct 2021

10:00 - 12:00
L3

Finite Element Exterior Calculus - Part 1

Kaibu Hu
(Oxford University)
Further Information

Structure: 4 x 2 hr Lectures

Part 1 - 27th October

Part 2 - 3rd November

Part 3 - 10th November

Part 4 - 17th November

Abstract

Many PDE models encode fundamental physical, geometric and topological structures. These structures may be lost in discretisations, and preserving them on the discrete level is crucial for the stability and efficiency of numerical methods. The finite element exterior calculus (FEEC) is a framework for constructing and analysing structure-preserving numerical methods for PDEs with ideas from topology, homological algebra and the Hodge theory. 

 

In this seminar, we present the theory and applications of FEEC. This includes analytic results (Hodge decomposition, regular potentials, compactness etc.), Hodge-Laplacian problems and their structure-preserving finite element discretisation, and applications in electromagnetism, fluid and solid mechanics. Knowledge on geometry and topology is not required as prerequisites.

 

References:

 

1. Arnold, D.N.: Finite Element Exterior Calculus. SIAM (2018) 

2. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15, 1 (2006) 

3. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bulletin of the American Mathematical Society 47(2), 281–354 (2010) 

4. Arnold, D.N., Hu, K.: Complexes from complexes. Foundations of Computational Mathematics (2021)

Tue, 26 Oct 2021
16:30
L5

String-like amplitudes for surfaces beyond the disk

Hugh Thomas
(UQÀM)
Abstract
In 1969, Koba and Nielsen found some equations (now known as u-equations or non-crossing equations) whose solutions can be described as cross-ratios of n points on a line. The tree string amplitude, or generalized Veneziano amplitude,  can be defined as an integral over the non-negative solutions to the u-equations. This is a function of the Mandelstam variables and has interesting properties: it does not diverge as the Mandelstam variables get large, and it exhibits factorization when one of the variables approaches zero. One should think of these functions as being associated to the disk with marked points on the boundary. I will report on ongoing work with Nima Arkani-Hamed, Hadleigh Frost, Pierre-Guy Plamondon, and Giulio Salvatori, in which we replace the disk by other oriented surfaces. I will emphasize the part of our approach which is based on representations of gentle algebras, which arise from a triangulation of the surface.

 

Tue, 26 Oct 2021

14:30 - 15:00
L3

Fast & Accurate Randomized Algorithms for Linear Systems and Eigenvalue Problems

Yuji Nakatsukasa
(University of Oxford)
Abstract

We develop a new class of algorithms for general linear systems and a wide range of eigenvalue problems. These algorithms apply fast randomized sketching to accelerate subspace projection methods.  This approach offers great flexibility in designing the basis for the approximation subspace, which can improve scalability in many computational environments. The resulting algorithms outperform the classic methods with minimal loss of accuracy. For model problems, numerical experiments show large advantages over MATLAB’s optimized routines, including a 100x speedup. 

Joint work with Joel Tropp (Caltech). 

Tue, 26 Oct 2021
14:00
Virtual

Friendly bisections of random graphs

Ashwin Sah
(MIT)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details. Joint with the Random Matrix Theory Seminar.

Abstract

We introduce a new method for studying stochastic processes in random graphs controlled by degree information, involving combining enumeration techniques with an abstract second moment argument. We use it to constructively resolve a conjecture of Füredi from 1988: with high probability, the random graph G(n,1/2) admits a friendly bisection of its vertex set, i.e., a partition of its vertex set into two parts whose sizes differ by at most one in which n-o(n) vertices have at least as many neighbours in their own part as across. This work is joint with Asaf Ferber, Matthew Kwan, Bhargav Narayanan, and Mehtaab Sawhney.

Tue, 26 Oct 2021

14:00 - 14:30
L3

Randomized algorithms for trace estimation

Alice Cortinovis
(EPFL)
Abstract

The Hutchinson’s trace estimator approximates the trace of a large-scale matrix A by computing the average of some quadratic forms involving A and some random vectors. Hutch++ is a more efficient trace estimation algorithm that combines this with the randomized singular value decomposition, which obtains a low-rank approximation of A by multiplying the matrix with some random vectors. In this talk, we present an improved version of Hutch++ which aims at minimizing the computational cost - that is, the number of matrix-vector multiplications with A - needed to achieve a trace estimate with a target accuracy. This is joint work with David Persson and Daniel Kressner.

Tue, 26 Oct 2021

14:00 - 15:00
Virtual

FFTA: Local2Global: Scaling global representation learning on graphs via local training

Lucas Jeub
(Institute for Scientific Interchange)
Abstract

We propose a decentralised “local2global" approach to graph representation learning, that one can a-priori use to scale any embedding technique. Our local2global approach proceeds by first dividing the input graph into overlapping subgraphs (or “patches") and training local representations for each patch independently. In a second step, we combine the local representations into a globally consistent representation by estimating the set of rigid motions that best align the local representations using information from the patch overlaps, via group synchronization.  A key distinguishing feature of local2global relative to existing work is that patches are trained independently without the need for the often costly parameter synchronisation during distributed training. This allows local2global to scale to large-scale industrial applications, where the input graph may not even fit into memory and may be stored in a distributed manner.

arXiv link: https://arxiv.org/abs/2107.12224v1

Tue, 26 Oct 2021
12:00
Virtual

Asymptotic safety - a symmetry principle for quantum gravity and matter

Astrid Eichhorn
(University of Southern Denmark)
Abstract

I will introduce asymptotic safety, which is a quantum field theoretic
paradigm providing a predictive ultraviolet completion for quantum field
theories. I will show examples of asymptotically safe theories and then
discuss the search for asymptotically safe models that include quantum
gravity.
In particular, I will explain how asymptotic safety corresponds to a new
symmetry principle - quantum scale symmetry - that has a high predictive
power. In the examples I will discuss, asymptotic safety with gravity could
enable a first-principles calculation of Yukawa couplings, e.g., in the
quark sector of the Standard Model, as well as in dark matter models.

Mon, 25 Oct 2021

16:00 - 17:00
L3

Brownian Windings

ISAO SAUZEDDE
(University of Oxford)
Abstract

Given a point and a loop in the plane, one can define a relative integer which counts how many times the curve winds around the point. We will discuss how this winding function, defined for almost every points in the plane, allows to define some integrals along the loop. Then, we will investigate some properties of it when the loop is Brownian.
In particular, we will explain how to recover data such as the Lévy area of the curve and its occupation measure, based on the values of the winding of uniformly distributed points on the plane.

 

Mon, 25 Oct 2021

16:00 - 17:00
C2

Hyperelliptic continued fractions

Francesco Ballini
(Oxford)
Abstract

We can define a continued fraction for formal series $f(t)=\sum_{i=-\infty}^d c_it^i$ by repeatedly removing the polynomial part, $\sum_{i=0}^d c_it^i$, (the equivalent of the integer part) and inverting the remaining part, as in the real case. This way, the partial quotients are polynomials. Both the usual continued fractions and the polynomial continued fractions carry properties of best approximation. However, while for square roots of rationals the real continued fraction is eventually periodic, such periodicity does not always occur for $\sqrt{D(t)}$. The correct analogy was found by Abel in 1826: the continued fraction of $\sqrt{D(t)}$ is eventually periodic if and only if there exist nontrivial polynomials $x(t)$, $y(t)$ such that $x(t)^2-D(t)y(t)^2=1$ (the polynomial Pell equation). Notice that the same holds also for square root of integers in the real case. In 2014 Zannier found that some periodicity survives for all the $\sqrt{D(t)}$: the degrees of their partial quotients are eventually periodic. His proof is strongly geometric and it is based on the study of the Jacobian of the curve $u^2=D(t)$. We give a brief survey of the theory of polynomial continued fractions, Jacobians and an account of the proof of the result of Zannier.

Mon, 25 Oct 2021
15:45
Virtual

How do field theories detect the torsion in topological modular forms

Daniel Berwick Evans
(University of Illinois at Urbana-Champaign)
Abstract

Since the mid 1980s, there have been hints of a connection between 2-dimensional field theories and elliptic cohomology. This lead to Stolz and Teichner's conjectured geometric model for the universal elliptic cohomology theory of topological modular forms (TMF) for which cocycles are 2-dimensional (supersymmetric) field theories. Properties of these field theories lead to the expected integrality and modularity properties of classes in TMF. However, the abundant torsion in TMF has always been mysterious from the field theory point of view. In this talk, we will describe a map from 2-dimensional field theories to a cohomology theory that approximates TMF. This map affords a cocycle description of certain torsion classes. In particular, we will explain how a choice of anomaly cancelation for the supersymmetric sigma model with target $S^3$ determines a cocycle representative of the generator of $\pi_3(TMF)=\mathbb{Z}/24$.