Two-dimensional chiral conformal field theories (CFTs) admit three distinct mathematical formulations: vertex operator algebras (VOAs), conformal nets, and Segal (functorial) chiral CFTs. With the broader aim to build fully extended Segal chiral CFTs, we start with the input of a conformal net.
In this talk, we focus on presenting three equivalent constructions of the category of solitons, i.e. the category of solitonic representations of the net, which we propose is what theory (chiral CFT) assigns to a point. Solitonic representations of the net are one of the primary class of examples of bicommutant categories (a categorified analogue of a von Neumann algebras). The Drinfel’d centre of solitonic representations is the representation category of the conformal net which has been studied before, particularly in the context of rational CFTs (finite-index nets). If time permits, we will briefly outline ongoing work on bicommutant category modules (which are the structures assigned by the Segal Chiral CFT at the level of 1-manifolds), hinting towards a categorified analogue of Connes fusion of von Neumann algebra modules.
(Bicommutant categories act on W*-categories analogous to von Neumann algebras acting on Hilbert spaces)