Wed, 29 Jan 2025
16:00
L6

Introduction to Congruence Subgroup Property

Adam Klukowski
(University of Oxford)
Abstract

Congruence Subgroup Property is a characterisation of finite-index subgroups of automorphism groups. It first arose from the study of subgroups of linear groups. In this talk, I will show a few examples where it holds and where it fails, and give an overview of what is known about the family $SL_n\mathbb{Z}$, $Out(F_n)$, $MCG(\Sigma)$. Then I will describe some related results in the case of Mapping Class Groups, and explain their relation to profinite rigidity of 3-manifolds.

Wed, 29 Jan 2025
15:00
L3

Emergent Phenomena in Critical Models of Statistical Physics: Exploring 2D Percolation

Prof Hugo Duminil-Copin
(IHES)
Abstract

For over 150 years, the study of phase transitions—such as water freezing into ice or magnets losing their magnetism—has been a cornerstone of statistical physics. In this talk, we explore the critical behavior of two-dimensional percolation models, which use random graphs to model the behavior of porous media. At the critical point, remarkable symmetries and emergent properties arise, providing precise insights into the nature of these systems and enriching our understanding of phase transitions. The presentation is designed to be accessible and does not assume any prior background in percolation theory.

 

About the Speaker

Hugo Duminil-Copin is is a French mathematician recognised for his groundbreaking work in probability theory and mathematical physics. He was appointed full professor at the University of Geneva in 2014 and since 2016 has also been a permanent professor at the Institut des Hautes Études Scientifiques (IHES) in France. In 2022 he was awarded the Fields Medal, the highest distinction in mathematics.

Wed, 29 Jan 2025
11:00
L4

Singularity of solutions to singular SPDEs.

Hirotatsu Nagoji
(Kyoto University)
Abstract

In this talk, we discuss the condition for the marginal distribution of the solution to singular SPDEs on the d-dimensional torus to be singular with respect to the law of the Gaussian measure induced by the linearized equation. As applications of our result, we see the singularity of the Phi^4_3-measure with respect to the Gaussian free field measure and the border of parameters for the fractional Phi^4-measure to be singular with respect to the base Gaussian measure. This talk is based on a joint work with Martin Hairer and Seiichiro Kusuoka.

Tue, 28 Jan 2025
16:00
C3

Bicommutant Categories from Conformal Nets

Nivedita Nivedita
((University of Oxford))
Abstract

Two-dimensional chiral conformal field theories (CFTs) admit three distinct mathematical formulations: vertex operator algebras (VOAs), conformal nets, and Segal (functorial) chiral CFTs. With the broader aim to build fully extended Segal chiral CFTs, we start with the input of a conformal net. 

In this talk, we focus on presenting three equivalent constructions of the category of solitons, i.e. the category of solitonic representations of the net, which we propose is what theory (chiral CFT) assigns to a point. Solitonic representations of the net are one of the primary class of examples of bicommutant categories (a categorified analogue of a von Neumann algebras). The Drinfel’d centre of solitonic representations is the representation category of the conformal net which has been studied before, particularly in the context of rational CFTs (finite-index nets). If time permits, we will briefly outline ongoing work on bicommutant category modules (which are the structures assigned by the Segal Chiral CFT at the level of 1-manifolds), hinting towards a categorified analogue of Connes fusion of von Neumann algebra modules.

(Bicommutant categories act on W*-categories analogous to von Neumann algebras acting on Hilbert spaces)

Tue, 28 Jan 2025
16:00
L6

Zigzag strategy for random matrices

Sven Joscha Henheik
(IST Austria)
Abstract

It is a remarkable property of random matrices, that their resolvents tend to concentrate around a deterministic matrix as the dimension of the matrix tends to infinity, even for a small imaginary part of the involved spectral parameter.
These estimates are called local laws and they are the cornerstone in most of the recent results in random matrix theory. 
In this talk, I will present a novel method of proving single-resolvent and multi-resolvent local laws for random matrices, the Zigzag strategy, which is a recursive tandem of the characteristic flow method and a Green function comparison argument. Novel results, which we obtained via the Zigzag strategy, include the optimal Eigenstate Thermalization Hypothesis (ETH) for Wigner matrices, uniformly in the spectrum, and universality of eigenvalue statistics at cusp singularities for correlated random matrices. 
 

Based on joint works with G. Cipolloni, L. Erdös, O. Kolupaiev, and V. Riabov.

Tue, 28 Jan 2025
15:00
L6

The space of traces of certain discrete groups

Raz Slutsky
Abstract

A trace on a group is a positive-definite conjugation-invariant function on it. In the past couple of decades, the study of traces has led to exciting connections to the rigidity, stability, and dynamics of groups. In this talk, I will explain these connections and focus on the topological structure of the space of traces of some groups. We will see the different behaviours of these spaces for free groups vs. higher-rank lattices. This is based on joint works with Arie Levit, Joav Orovitz and Itamar Vigdorovich.

Tue, 28 Jan 2025
14:00
L6

Categorical valuations for polytopes and matroids

Nicholas Proudfoot
(All Souls, University of Oxford Visiting Fellow)
Abstract

Valulations (of polytopes or matroids) are very useful and very mysterious. After taking some time to explain this concept, I will categorify it, with the aim of making it both more useful and less mysterious.

Tue, 28 Jan 2025
13:00
L5

Symmetric impurities and constraints on their screening

Christian Copetti
(Oxford )
Abstract

"The question of whether an impurity can be screened by bulk degrees of freedom is central to the study of defects and to (variations of) the Kondo problem. In this talk I discuss how symmetry, generalized or not, can give serious constraints on the possible scenarios at long distances. These can be quantified in the UV where the defect is weakly coupled. I will give some examples of interesting symmetric defect RG flows in (1+1) and (2+1)d.

Based on https://arxiv.org/pdf/2412.18652 and work in progress."

Mon, 27 Jan 2025
16:30
L4

Sampling with Minimal Energy

Ed Saff
(Vanderbilt University)
Abstract

Minimal discrete energy problems arise in a variety of scientific contexts – such as crystallography, nanotechnology, information theory, and viral morphology, to name but a few.     Our goal is to analyze the structure of configurations generated by optimal (and near optimal)-point configurations that minimize the Riesz s-energy over a sphere in Euclidean space R^d and, more generally, over a bounded manifold. The Riesz s-energy potential, which is a generalization of the Coulomb potential, is simply given by 1/r^s, where r denotes the distance between pairs of points. We show how such potentials for s>d and their minimizing point configurations are ideal for use in sampling surfaces.

Connections to the results by Field's medalist M. Viazovska and her collaborators on best-packing and universal optimality in 8 and 24 dimensions will be discussed. Finally we analyze the minimization of a "k-nearest neighbor" truncated version of Riesz energy that reduces the order N^2 computation for energy minimization to order N log N , while preserving global and local properties.

Mon, 27 Jan 2025
16:00
C4

Applied analytic number theory

Cédric Pilatte
(University of Oxford)
Abstract

The security of many widely used communication systems hinges on the presumed difficulty of factoring integers or computing discrete logarithms. However, Shor's celebrated algorithm from 1994 demonstrated that quantum computers can perform these tasks in polynomial time. In 2023, Regev proposed an even faster quantum algorithm for factoring integers. Unfortunately, the correctness of his new method is conditional on an ad hoc number-theoretic conjecture. Using tools from analytic number theory, we establish a result in the direction of Regev's conjecture. This enables us to design a provably correct quantum algorithm for factoring and solving the discrete logarithm problem, whose efficiency is comparable to Regev's approach. In this talk, we will give an accessible account of these developments.

Mon, 27 Jan 2025
15:30
L3

Adapted optimal transport for stochastic processes

Dr Daniel Bartl
(University of Vienna)
Abstract
In this talk, I will discuss adapted transport theory and the adapted Wasserstein distance, which extend classical transport theory from probability measures to stochastic processes by incorporating the temporal flow of information. This adaptation addresses key limitations of classical transport when dealing with time-dependent data. 
I will highlight how, unlike other topologies for stochastic processes, the adapted Wasserstein distance ensures continuity for fundamental probabilistic operations, including the Doob decomposition, optimal stopping, and stochastic control. Additionally, I will explore how adapted transport preserves many desirable properties of classical transport theory, making it a powerful tool for analyzing stochastic systems.
Mon, 27 Jan 2025
15:30
L5

(cancelled)

(Oxford University)
Mon, 27 Jan 2025
13:00
L6

Spectrum of 4d near-BPS black holes and their dual CFT

Alice Lüscher
Abstract

 While extremal black hole microstates are reproduced by index calculations, the study of near-BPS black holes requires special care to account for quantum fluctuations. A semiclassical analysis indicates that the spectrum of such black holes has a large extremal degeneracy followed by a mass gap up to a continuum of non-BPS states. The inclusion of a theta angle term alters the properties of the spectrum (Witten effect shifting the mass gap and mixed 't Hooft anomaly). This journal club will study two papers by Toldo and Heydeman, [2412.03695] and [2412.03697] where they study 4d near-BPS black holes. As we shall see, a key point of their derivation is the reduction to 2d JT gravity. The dual CFTs are ABJM and some class R (non lagrangian) theories. Since these theories are strongly coupled, the gravity analysis offers a powerful tool to describe their specturm at finite temperature.

Fri, 24 Jan 2025
15:00
L4

Efficient computation of the persistent homology of Rips complexes

Katharine Turner
(Australian National University)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Abstract

Given a point cloud in Euclidean space and a fixed length scale, we can create simplicial complexes (called Rips complexes) to represent that point cloud using the pairwise distances between the points. By tracking how the homology classes evolve as we increase that length scale, we summarise the topology and the geometry of the “shape” of the point cloud in what is called the persistent homology of its Rips filtration. A major obstacle to more widespread take up of persistent homology as a data analysis tool is the long computation time and, more importantly, the large memory requirements needed to store the filtrations of Rips complexes and compute its persistent homology. We bypass these issues by finding a “Reduced Rips Filtration” which has the same degree-1 persistent homology but with dramatically fewer simplices.

The talk is based off joint work is with Musashi Koyama, Facundo Memoli and Vanessa Robins.

Fri, 24 Jan 2025 14:00 -
Fri, 31 Jan 2025 16:00
L6

INTRODUCTION TO DISCRETE ENERGY ON RECTIFIABLE SETS

Ed Saff
(Vanderbilt University)
Abstract

Discrete and continuous energy problems that arise in a variety of scientific contexts are introduced, along with their fundamental existence and uniqueness results. Particular emphasis will be on Riesz and Gaussian pair potentials and their connections with best-packing and the discretization of manifolds. The latter application leads to the asymptotic theory (as N → ∞) for N-point configurations that minimize energy when the potential is hypersingular (short-range). For fixed N, the determination of such minimizing configurations on the d-dimensional unit sphere S d is especially significant in a range of contexts that include coding theory, discrete geometry, and physics. We will review linear programming methods for proving the optimality of configurations on S d , including Cohn and Kumar’s theory of universal optimality. The following reference will be made available during the short course: Discrete Energy on Rectifiable Sets, by S. Borodachov, D.P. Hardin and E.B. Saff, Springer Monographs in Mathematics, 2019.

Sessions:

Friday, 24 January 14:00-16:00

Friday, 31 January 14:00-16:00

Fri, 24 Jan 2025

12:00 - 13:00
Common Room

Junior Algebra Social

Abstract

The Junior Algebra and Representation Theory Seminar will kick-off the start of Hilary Term with a social event in the common room. Come to catch up with your fellow students and maybe play a board game or two. Afterwards we'll have lunch together.

Fri, 24 Jan 2025

11:00 - 12:00
L4

Combining computational modelling, deep generative learning and imaging to infer new biology

Prof Simon Walker-Samuel
(Dept of Imaging, UCL)
Abstract

Deep learning algorithms provide unprecedented opportunities to characterise complex structure in large data, but typically in a manner that cannot easily be interpreted beyond the 'black box'. We are developing methods to leverage the benefits of deep generative learning and computational modelling (e.g. fluid dynamics, solid mechanics, biochemistry), particularly in conjunction with biomedical imaging, to enable new insights into disease to be made. In this talk, I will describe our applications in several areas, including modelling drug delivery in cancer and retinal blood vessel loss in diabetes, and how this is leading us into the development of personalised digital twins.

Thu, 23 Jan 2025
16:00
Lecture Room 4

Continuity of heights and complete intersections in toric varieties

Michal Szachniewicz
((University of Oxford))
Abstract

I will describe the contents of a joint project with Pablo Destic and Nuno Hultberg. In the paper we confirm a conjecture of Roberto Gualdi regarding a formula for the average height of the intersection of twisted (by roots of unity) hyperplanes in a toric variety. I will introduce the 'GVF analytification' of a variety, which is defined similarly as the Berkovich analytification, but with norms replaced by heights. Moreover, I will discuss some motivations coming from (continuous) model theory and Arakelov geometry.

Thu, 23 Jan 2025

14:00 - 15:00
Lecture Room 3

Multi-Index Monte Carlo Method for Semilinear Stochastic Partial Differential Equations

Abdul Lateef Haji-Ali
(Heriot Watt)
Abstract

We present an exponential-integrator-based multi-index Monte Carlo (MIMC) method for the weak approximation of mild solutions to semilinear stochastic partial differential equations (SPDEs). Theoretical results on multi-index coupled solutions of the SPDE are provided, demonstrating their stability and the satisfaction of multiplicative error estimates. Leveraging this theory, we develop a tractable MIMC algorithm. Numerical experiments illustrate that MIMC outperforms alternative approaches, such as multilevel Monte Carlo, particularly in low-regularity settings.

Thu, 23 Jan 2025
13:00
N3.12

Aspects of anomalies - Part 2

Alison Warman
Abstract

Anomalies in quantum systems are present when a classical symmetry is broken by quantum effects. They give rise to physical predictions and constraints. This talk will focus on the mathematical features of anomalies of continuous, ordinary, symmetries. In the first part, we will review the topological nature of anomalies, in particular the connection to the Atiyah-Singer index theorem and its non-perturbative path-integral computation by Fujikawa. We will then discuss how anomalies and their associated (topological) Chern-Simons polynomials are related to BRST cohomology via the Stora-Zumino chain of descent equations, explaining the connection to the two-step descent procedure reviewed in the talk by Alice Lüscher last term.

 

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 23 Jan 2025

12:00 - 13:00
L3

Optimal design of odd active solids

Anton Souslov
(University of Cambridge)
Further Information

Anton Souslov is an Associate Professor of Theoretical Statistical Physics working on the theory of soft materials, including mechanical metamaterials, active matter, topological states, and polymer physics.

Abstract

Active solids consume energy to allow for actuation and shape change not possible in equilibrium. I will first introduce active solids in comparison with their active fluid counterparts. I will then focus on active solids composed of non-reciprocal springs and show how so-called odd elastic moduli arise in these materials. Odd active solids have counter-intuitive elastic properties and require new design principles for optimal response. For example, in floppy lattices, zero modes couple to microscopic non-reciprocity, which destroys odd moduli entirely in a phenomenon reminiscent of rigidity percolation. Instead, an optimal odd lattice will be sufficiently soft to activate elastic deformations, but not too soft. These results provide a theoretical underpinning for recent experiments and point to the design of novel soft machines.

 

 

Thu, 23 Jan 2025

12:00 - 12:30
Lecture room 5

Efficient Adaptive Regularized Tensor Methods

Yang Liu
(Mathematical Institute (University of Oxford))
Abstract

High-order tensor methods employing local Taylor approximations have attracted considerable attention for convex and nonconvex optimisation. The pth-order adaptive regularisation (ARp) approach builds a local model comprising a pth-order Taylor expansion and a (p+1)th-order regularisation term, delivering optimal worst-case global and local convergence rates. However, for p≥2, subproblem minimisation can yield multiple local minima, and while a global minimiser is recommended for p=2, effectively identifying a suitable local minimum for p≥3 remains elusive.
This work extends interpolation-based updating strategies, originally proposed for p=2, to cases where p≥3, allowing the regularisation parameter to adapt in response to interpolation models. Additionally, it introduces a new prerejection mechanism to discard unfavourable subproblem minimisers before function evaluations, thus reducing computational costs for p≥3.
Numerical experiments, particularly on Chebyshev-Rosenbrock problems with p=3, indicate that the proper use of different minimisers can significantly improve practical performance, offering a promising direction for designing more efficient high-order methods.

Thu, 23 Jan 2025

11:00 - 12:00
L5

A new axiom for Q_p^ab and non-standard methods for perfectoid fields

Leo Gitin
(University of Oxford)
Abstract

The class of henselian valued fields with non-discrete value group is not well-understood. In 2018, Koenigsmann conjectured that a list of seven natural axioms describes a complete axiomatisation of Q_p^ab, the maximal extension of the p-adic numbers Q_p with abelian Galois group, which is an example of such a valued field. Informed by the recent work of Jahnke-Kartas on the model theory of perfectoid fields, we formulate an eighth axiom (the discriminant property) that is not a consequence of the other seven. Revisiting work by Koenigsmann (the Galois characterisation of Q_p) and Jahnke-Kartas, we give a uniform treatment of their underlying method. In particular, we highlight how this method yields short, non-standard model-theoretic proofs of known results (e.g. finite extensions of perfectoid fields are perfectoid).

Wed, 22 Jan 2025
16:00
L6

Skein Lasagna Modules

Colin McCulloch
(University of Oxford)
Abstract

Donaldson proved that there are pairs of 4-manifolds that are homeomorphic but not diffeomorphic, a phenomenon that does not appear for any lower dimensional manifolds. Until recently, proving this for compact manifolds has required smooth 4-manifold invariants coming from gauge theory. In this talk, we will give an introduction to an exciting new smooth 4-manifold invariant of Morrison Walker and Wedich, called a skein lasagna module that does not rely on gauge theory. Further, this talk will not assume any knowledge of 4-manifold topology.

Wed, 22 Jan 2025
11:00
L6

Adapted Wasserstein distance between continuous Gaussian processes

Yifan Jiang
(Mathematical Institute)
Abstract
Adapted Wasserstein distance is a generalization of the classical Wasserstein distance for stochastic processes. It captures not only the spatial information but also the temporal information induced by the processes. In this talk, I will focus on the adapted Wasserstein distance between continuous Gaussian processes. An explicit formula in terms of their canonical representations will be given. These results cover rough processes such as fractional Brownian motions and fractional Ornstein--Uhlenbeck processes. If time permits, I will also show that the optimal coupling between two 1D additive fractional SDE is driven by the synchronous coupling of the noise.
We introduce a 'causal factorization' as an infinite dimensional Cholesky decomposition on Hilbert spaces. This naturally bridges the probabilistic notion 'causal transport' and the algebraic object 'nest algebra'.  Such a factorization is closely related to the (non)canonical representation of Gaussian processes which is of independent interest. This talk is based on a work-in-progress with Fang Rui Lim.