Date
Mon, 10 Mar 2025
15:30
Location
L3
Speaker
Dr Daniel Lacker
Organisation
Columbia University

When and how well can a high-dimensional system of stochastic differential equations (SDEs) be approximated by one with independent coordinates? This fundamental question is at the heart of the theory of mean field limits and the propagation of chaos phenomenon, which arise in the study of large (many-body) systems of interacting particles. This talk will present recent sharp quantitative answers to this question, both for classical mean field models and for more recently studied non-exchangeable models. Two high-level ideas underlie these answers. The first is a simple non-asymptotic construction, called the independent projection, which is a natural way to approximate a general SDE system by one with independent coordinates. The second is a "local" perspective, in which low-dimensional marginals are estimated iteratively by adding one coordinate at a time, leading to surprising improvements on prior results obtained by "global" arguments such as subadditivity inequalities. In the non-exchangeable setting, we exploit a surprising connection with first-passage percolation.

Last updated on 17 Jan 2025, 8:06am. Please contact us with feedback and comments about this page.