Thu, 17 Oct 2019

16:00 - 17:00

Simplicity and Complexity of Belief-Propagation

Elchanan Mossel
(MIT)
Further Information

This Colloquium is taking place in the Department of Statistics on St Giles'.

Abstract

There is a very simple algorithm for the inference of posteriors for probability models on trees. This algorithm, known as "Belief Propagation" is widely used in coding theory, in machine learning, in evolutionary inference, among many other areas. The talk will be devoted to the analysis of Belief Propagation in some of the simplest probability models. We will highlight the interplay between Belief Propagation, linear estimators (statistics), the Kesten-Stigum bound (probability) and Replica Symmetry Breaking (statistical physics). We will show how the analysis of Belief Propagation allowed proof phase transitions for phylogenetic reconstruction in evolutionary biology and developed optimal algorithms for inference of block models. Finally, we will discuss the computational complexity of this 'simple' algorithm.

Thu, 17 Oct 2019

15:30 - 17:00
L3

Nitric oxide in the exhaled air: a messenger from the deepest parts of the lungs. Mathematical modeling of its transport for a better management of pulmonary diseases (cystic fibrosis, asthma, …)

Benoit Haut
(Université libre de Bruxelles (ULB))
Abstract

During this seminar, we will present a new mathematical model describing the transport of nitric oxide (NO) in a realistic geometrical representation of the lungs. Nitric oxide (NO) is naturally produced in the bronchial region of the lungs. It is a physiological molecule that has antimicrobial properties and allows the relaxation of muscles. It is well known that the measurement of the molar fraction of NO in the exhaled air, the so-called FeNO, allows a monitoring of asthmatic patients, since the production of this molecule in the lungs is increased in case of inflammation. However, recent clinical studies have shown that the amount of NO in the exhaled air can also be affected by « non-inflammatory » processes, such as the action of a bronchodilator or a respiratory physiotherapy session for a patient with cystic fibrosis. Using our new model, we will highlight the complex interplay between different transport phenomena in the lungs. More specifically, we will show why changes taking place in the deepest part of the lungs are expected to impact the FeNO. This gives a new light on the clinical studies mentioned below, allowing to confer a new role to the NO for the management of various pulmonary pathologies.

Thu, 17 Oct 2019

14:00 - 15:00
L5

Deep Learning: Asymptotics and Financial Applications

Justin Sirignano
(University of Illinois)
Abstract

Deep learning has revolutionized image, text, and speech recognition. Motivated by this success, there is growing interest in developing deep learning methods for financial applications. We will present some of our recent results in this area, including deep learning models of high-frequency data. In the second part of the talk, we prove a law of large numbers for single-layer neural networks trained with stochastic gradient descent. We show that, depending upon the normalization of the parameters, the law of large numbers either satisfies a deterministic partial differential equation or a random ordinary differential equation. Using similar analysis, a law of large numbers can also be established for reinforcement learning (e.g., Q-learning) with neural networks. The limit equations in each of these cases are discussed (e.g., whether a unique stationary point and global convergence can be proven).  

Thu, 17 Oct 2019

12:00 - 13:00
L4

Quasi-normal modes on asymptotically flat black holes

Dejan Gajic
(Cambridge)
Abstract

A fundamental problem in the context of Einstein's equations of general relativity is to understand precisely the dynamical evolution of small perturbations of stationary black hole solutions. It is expected that there is a discrete set of characteristic frequencies that play a dominant role at late time intervals and carry information about the nature of the black hole, much like the normal frequencies of a vibrating string. These frequencies are called quasi-normal frequencies or resonances and they are closely related to scattering resonances in the study of Schrödinger-type equations. I will discuss a new method of defining and studying resonances for linear wave equations on asymptotically flat black holes, developed from joint work with Claude Warnick.

Wed, 16 Oct 2019
16:00
C1

What Does a Cayley Graph Look Like?

Alice Kerr
(University of Oxford)
Abstract

Every Cayley graph of a finitely generated group has some basic properties: they are locally finite, connected, and vertex-transitive. These are not sufficient conditions, there are some well known examples of graphs that have all these properties but are non-Cayley. These examples do however "look like" Cayley graphs, which leads to the natural question of if there exist any vertex-transitive graphs that are completely unlike any Cayley graph. I plan to give some of the history of this question, as well as the construction of the example that finally answered it.

 

Wed, 16 Oct 2019
11:00
N3.12

Linear antimetrics and the "twin paradox"

Esteban Gomezllata Marmolejo
Abstract

The triangular inequality is central in Mathematics. What would happen if we reverse it? We only obtain trivial spaces. However, if we mix it with an order structure, we obtain interesting spaces. We'll present linear antimetrics, prove a "masking theorem", and then look at a corollary which tells us about the "twin paradox" in special relativity; time is antimetric!

Tue, 15 Oct 2019

15:30 - 16:30
L6

On random waves in Seba's billiard

Henrik Ueberschär
(Sorbonne Université)
Abstract

In this talk I will give an overview of Seba's billiard as a popular model in the field of Quantum Chaos. Consider a rectangular billiard with a Dirac mass placed in its interior. Whereas this mass has essentially no effect on the classical dynamics, it does have an effect on the quantum dynamics, because quantum wave packets experience diffraction at the point obstacle. Numerical investigations of this model by Petr Seba suggested that the spectrum and the eigenfunctions of the Seba billiard resemble the spectra and eigenfunctions of billiards which are classically chaotic.

I will give an introduction to this model and discuss recent results on quantum ergodicity, superscars and the validity of Berry's random wave conjecture. This talk is based on joint work with Par Kurlberg and Zeev Rudnick.

Tue, 15 Oct 2019

15:30 - 16:30
L4

D-modules in logarithmic geometry

Clemens Koppensteiner
(Oxford)
Abstract

Given a smooth variety X with a normal crossings divisor D (or more generally a smooth log variety) we consider the ring of logarithmic differential operators: the subring of differential operators on X generated by vector fields tangent to D. Modules over this ring are called logarithmic D-modules and generalize the classical theory of regular meromorphic connections. They arise naturally when considering compactifications.

We will discuss which parts of the theory of D-modules generalize to the logarithmic setting and how to overcome new challenges arising from the logarithmic structure. In particular, we will define holonomicity for log D-modules and state a conjectural extension of the famous Riemann-Hilbert correspondence. This talk will be very example-focused and will not require any previous knowledge of D-modules or logarithmic geometry. This is joint work with Mattia Talpo.
 

Tue, 15 Oct 2019
14:30
L5

Finite Element Methods for Intrinsic Geometric Flows

Evan Gawlik
(University of Hawaii at Manoa)
Abstract

Partial differential equations governing unknown or evolving geometries are ubiquitous in applications and challenging to discretize. A great deal of numerical work in this area has focused on extrinsic geometric flows, where the evolving geometry is a curve or surface embedded in Euclidean space. Much less attention has been paid to the discretization of intrinsic geometric flows, where the evolving geometry is described by a Riemannian metric. This talk will present finite element discretizations of such flows.
 

Tue, 15 Oct 2019

14:15 - 15:15
L4

Combinatorial anabelian geometry and its applications

Shota Tsujimura
(RIMS, Kyoto)
Abstract

Combinatorial anabelian geometry is a modern branch of anabelian geometry which deals with those aspects of anabelian geometry which manifest themselves over algebraically closed fields of characteristic zero. The origin of combinatorial anabelian geometry is in S. Mochizuki’s pioneering papers from 2007, in which he reinterpreted and generalised some key components of his earlier famous proof of the Grothendieck conjecture. S. Mochizuki  discovered that one can separate arguments which work over algebraically closed fields from arithmetic arguments, and study the former by using combinatorial methods. This led to a very nontrivial development of the theory of combinatorial anabelian geometry by S. Mochizuki and Y. Hoshi and other mathematicians. In this talk, after introducing the theory of combinatorial anabelian geometry I will discuss  applications of combinatorial anabelian geometry to the study of the absolute Galois group of number fields and of p-adic local fields and to the study of the Grothendieck-Teichmueller group. In particular, I will talk about the recent construction of a splitting of the natural inclusion of the absolute Galois group of p-adic numbers to the (largest) p-adic Grothendieck–Teichmueller group and a splitting of the natural embedding of the absolute Galois group of rationals into the commensurator of the absolute Galois group of the maximal abelian extension of rationals in the Grothendieck–Teichmueller group.
 

Tue, 15 Oct 2019

14:00 - 15:00
L6

Approximately counting and sampling small witnesses using a colourful decision oracle

Kitty Meeks
(University of Glasgow)
Abstract

Decision problems – those in which the goal is to return an answer of “YES" or “NO" – are at the heart of the theory of computational complexity, and remain the most studied problems in the theoretical algorithms community. However, in many real-world applications it is not enough just to decide whether the problem under consideration admits a solution: we often want to find all solutions, or at least count (either exactly or approximately) their  total number. It is clear that finding or counting all solutions is at least as computationally difficult as deciding whether there exists a single solution, and  indeed in many cases it is strictly harder (assuming P is not equal NP) even to count approximately the number of solutions than it is to decide whether there exists at least one.


In this talk I will discuss a restricted family of problems, in which we are interested in solutions of a given size: for example, solutions could be copies of a specific k-vertex graph H in a large host graph G, or more generally k-vertex subgraphs of G that have some specified property (e.g. k-vertex subgraphs that are connected). In this setting, although exact counting is strictly harder than decision (assuming standard assumptions in parameterised complexity), the methods typically used to separate approximate counting from decision break down. Indeed, I will demonstrate a method that, subject to certain additional assumptions, allows us to transform an efficient decision algorithm for a problem of this form into an approximate counting algorithm with essentially the same running time.

This is joint work with John Lapinskas (Bristol) and Holger Dell (ITU Copenhagen).

Tue, 15 Oct 2019
14:00
L5

Wilkinson, numerical analysis, and me

Nick Trefethen
(Oxford)
Abstract

The two courses I took from Wilkinson as a graduate student at Stanford influenced me greatly.  Along with some reminiscences of those days, this talk will touch upon backward error analysis, Gaussian elimination, and Evariste Galois.  It was originally presented at the Wilkinson 100th Birthday conference in Manchester earlier this year.

 

Tue, 15 Oct 2019

12:00 - 13:00
C1

Elasticity of random polymer networks

Ghadeer Alame
(Monash University)
Abstract

Many soft materials, such as elastomers and hydrogels, are made of long chain molecules crosslinked to form a three-dimensional network. Their mechanical properties depend on network parameters such as chain density, chain length distribution and the functionality of the crosslinks. Understanding the relationships between the topology of polymer networks and their mechanical properties has been a long-standing challenge in polymer physics.

In this work, we focus on so-called “near-ideal” networks, which are produced by the cross-coupling of star-like macromolecules with well-defined chain length. We developed a computational approach based on random discrete networks, according to which the polymer network is represented by an assembly of non-linear springs connected at junction points representing crosslinks. The positions of the crosslink points are determined from the conditions of mechanical equilibrium. Scaling relations for the elastic modulus and maximum extensibility of the network were obtained. Our scaling relations contradict some predictions of classical estimates of rubber elasticity and have implications for the interpretation of experimental data for near-ideal polymer networks.

Reference: G. Alame, L. Brassart. Relative contributions of chain density and topology to the elasticity of two-dimensional polymer networks. Soft Matter 15, 5703 (2019).

Tue, 15 Oct 2019

12:00 - 13:15
L4

Gauged sigma models and magnetic skyrmions

Bernd Schroers
(Heriot Watt University Edinburgh)
Abstract

Magnetic skyrmions are topological solitons which occur in a large class
of ferromagnetic materials and which are currently attracting much
attention in the condensed matter community because of  their possible
use  in future magnetic information storage technology.  The talk is
about an integrable model for magnetic skyrmions, introduced in a recent
paper (arxiv 1812.07268) and generalised in (arxiv 1905.06285). The
model can be solved by interpreting it as a gauged nonlinear sigma
model. In the talk will explain the model and the geometry behind its
integrability, and discuss some of the solutions and their physical
interpretation.

Mon, 14 Oct 2019

16:00 - 17:00
C1

From Chabauty's Method to Kim's Non-Abelian Chabauty's Method

Nadav Gropper
(Archaeology, Oxford)
Abstract

In 1941, Chabauty gave a way to compute the set of rational points on specific curves. In 2004, Minhyong Kim showed how to extend Chabauty's method to a bigger class of curves using anabelian methods. In the talk, I will explain Chabauty's method and give an outline of how Kim extended those methods.

Mon, 14 Oct 2019

15:45 - 16:45
L3

Entrance and exit at infinity for stable jump diffusions

ANDREAS KYPRIANOU
(University of Bath)
Abstract

Description:In his seminal work from the 1950s, William Feller classified all one-dimensional diffusions in terms of their ability to access the boundary (Feller's test for explosions) and to enter the interior from the boundary. Feller's technique is restricted to diffusion processes as the corresponding differential generators allow explicit computations and the use of Hille-Yosida theory. In the present article we study exit and entrance from infinity for jump diffusions driven by a stable process.Many results have been proved for jump diffusions, employing a variety of techniques developed after Feller's work but exit and entrance from infinite boundaries has long remained open. We show that the these processes have features not observes in the diffusion setting. We derive necessary and sufficient conditions on σ so that (i) non-exploding solutions exist and (ii) the corresponding transition semigroup extends to an entrance point at `infinity'. Our proofs are based on very recent developments for path transformations of stable processes via the Lamperti-Kiu representation and new Wiener-Hopf factorisations for Lévy processes that lie therein. The arguments draw together original and intricate applications of results using the Riesz-Bogdan--Żak transformation, entrance laws for self-similar Markov processes, perpetual integrals of Lévy processes and fluctuation theory, which have not been used before in the SDE setting, thereby allowing us to employ classical theory such as Hunt-Nagasawa duality and Getoor's characterisation of transience and recurrence.

 
Mon, 14 Oct 2019
15:45
L6

Uryson width and volume

Panos Papasoglu
(Oxford)
Abstract

I will give a brief survey of some problems in curvature free geometry and sketch

a new proof of the following:

Theorem (Guth). There is some $\delta (n)>0$ such that if $(M^n,g)$ is a closed aspherical Riemannian manifold and $V(R)$ is the volume of the largest ball of radius $R$ in the universal cover of $M$, then $V(R)\geq \delta(n)R^n$ for all $R$.

I will also discuss some recent related questions and results.

Mon, 14 Oct 2019

14:15 - 15:15
L3

Optimal control of stochastic evolution equations via randomisation and backward stochastic differential equations.

MARCO FUHRMAN
(University of Milan)
Abstract

Backward Stochastic Differential Equations (BSDEs) have been successfully applied  to represent the value of optimal control problems for controlled

stochastic differential equations. Since in the classical framework several restrictions on the scope of applicability of this method remained, in recent times several approaches have been devised to obtain the desired probabilistic representation in more general situations. We will review the so called  randomization method, originally introduced by B. Bouchard in the framework of optimal switching problems, which consists in introducing an auxiliary,`randomized'' problem with the same value as the original one, where the control process is replaced by an exogenous random point process,and optimization is performed over a family of equivalent probability measures. The value of the randomized problem is then represented

by means of a special class of BSDEs with a constraint on one of the unknown processes.This methodology will be applied in the framework of controlled evolution equations (with immediate applications to controlled SPDEs), a case for which very few results are known so far.

 

 

 

 

Mon, 14 Oct 2019

14:15 - 15:15
L4

Local stability of Einstein metrics under the Ricci iteration

Tim Buttsworth
(Cornell)
Further Information

A Ricci iteration is a sequence of Riemannian metrics on a manifold such that every metric in the sequence is equal to the Ricci curvature of the next metric. These sequences of metrics were introduced by Rubinstein to provide a discretisation of the Ricci flow. In this talk, I will discuss the relationship between the Ricci iteration and the Ricci flow. I will also describe a recent result concerning the existence and convergence of Ricci iterations close to certain Einstein metrics. (Joint work with Max Hallgren)

Mon, 14 Oct 2019
12:45
L3

Black Holes to Algebraic Curves: Consequences of the Weak Gravity Conjecture

Tom Rudelius
(IAS Princeton)
Abstract

The Weak Gravity Conjecture holds that in any consistent theory of quantum gravity, gravity must be the weakest force. This simple proposition has surprisingly nontrivial physical consequences, which in the case of supersymmetric string/M-theory compactifications lead to nontrivial geometric consequences for Calabi-Yau manifolds. In this talk we will describe these conjectured geometric consequences in detail and show how they are realized in concrete examples, deriving new results about 5d supersymmetric black holes in the process.

Thu, 10 Oct 2019

16:00 - 17:00
L4

Universal Approximation with Deep Narrow Networks

Patrick Kidger
(University of Oxford)
Abstract

The classical Universal Approximation Theorem certifies that the universal approximation property holds for the class of neural networks of arbitrary width. Here we consider the natural `dual' theorem for width-bounded networks of arbitrary depth, for a broad class of activation functions. In particular we show that such a result holds for polynomial activation functions, making this genuinely different to the classical case. We will then discuss some natural extensions of this result, e.g. for nowhere differentiable activation functions, or for noncompact domains.
 

Thu, 10 Oct 2019

16:00 - 17:30
L3

Structured Tensors and the Geometry of Data

Anna Seigal
(Mathematical Institute (University of Oxford))
Further Information

Our new Hooke fellow will introduce her research. 

Abstract

Tensors are higher dimensional analogues of matrices; they are used to record data with multiple changing variables. Interpreting tensor data requires finding low rank structure, and the structure depends on the application or context. Often tensors of interest define semi-algebraic sets, given by polynomial equations and inequalities. I'll give a characterization of the set of tensors of real rank two, and answer questions about statistical models using probability tensors and semi-algebraic statistics. I will also describe work on learning a path from its three-dimensional signature tensor. This talk is based on joint work with Guido Montúfar, Max Pfeffer, and Bernd Sturmfels.

Tue, 08 Oct 2019
14:30
L2

Robust multigrid for linear elasticity and incompressible flow

Florian Wechsung
(Oxford)
Abstract

We study nearly singular PDEs that arise in the solution of linear elasticity and incompressible flow. We will demonstrate, that due to the nearly singular nature, standard methods for the solution of the linear systems arising in a finite element discretisation for these problems fail. We motivate two key ingredients required for a robust multigrid scheme for these equations and construct robust relaxation and prolongation operators for a particular choice of discretisation.