Mon, 31 Jan 2011
14:15
Eagle House

Bayesian approach to an elliptic inverse problem

Masoumeh Dashti
Abstract

Abstract: We consider the inverse problem of finding the diffusion coefficient of a linear uniformly elliptic partial differential equation in divergence form, from noisy measurements of the forward solution in the interior. We adopt a Bayesian approach to the problem. We consider the prior measure on the diffusion coefficient to be either a Besov or Gaussian measure. We show that if the functions drawn from the prior are regular enough, the posterior measure is well-defined and Lipschitz continuous with respect to the data in the Hellinger metric. We also quantify the errors incurred by approximating the posterior measure in a finite dimensional space. This is joint work with Stephen Harris and Andrew Stuart.

Mon, 31 Jan 2011

12:00 - 13:00
L3

Branes, Boxes and Black Holes

Toby Wiseman
(Imperial College)
Abstract
Abstract: I will begin by reviewing the use of Ricci flow and the associated Ricci soliton equation to provide constructive numerical algorithms to find static vacuum black holes. I will then describe recent progress to generalize these methods to stationary black holes. I will present new results found using these methods, firstly on stationary black holes in spherical boxes, and secondly, black holes localized on a Randall-Sundrum brane. The latter case hopefully resolves the validity of a phenomenologically striking and important conjecture, and also has relevance to AdS-CFT.
Fri, 28 Jan 2011
16:30
L2

"h-principle and fluid dynamics"

Professor Camillo De Lellis.
Abstract

There are nontrivial solutions of the incompressible Euler equations which are compactly supported in space and time. If they were to model the motion of a real fluid, we would see it suddenly start moving after staying at rest for a while, without any action by an external force. There are C1 isometric embeddings of a fixed flat rectangle in arbitrarily small balls of the three dimensional space. You should therefore be able to put a fairly large piece of paper in a pocket of your jacket without folding it or crumpling it. I will discuss the corresponding mathematical theorems, point out some surprising relations and give evidences that, maybe, they are not merely a mathematical game.

Fri, 28 Jan 2011
14:15
DH 1st floor SR

Capital Minimization as a Market Objective

Dr Dilip Madan
(University of Maryland)
Abstract

The static two price economy of conic finance is first employed to

define capital, profit, and subsequently return and leverage. Examples

illustrate how profits are negative on claims taking exposure to loss

and positive on claims taking gain exposure. It is argued that though

markets do not have preferences or objectives of their own, competitive

pressures lead markets to become capital minimizers or leverage

maximizers. Yet within a static context one observes that hedging

strategies must then depart from delta hedging and incorporate gamma

adjustments. Finally these ideas are generalized to a dynamic context

where for dynamic conic finance, the bid and ask price sequences are

seen as nonlinear expectation operators associated with the solution of

particular backward stochastic difference equations (BSDE) solved in

discrete time at particular tenors leading to tenor specific or

equivalently liquidity contingent pricing. The drivers of the associated

BSDEs are exhibited in complete detail.

Thu, 27 Jan 2011
17:00
L3

Decidability of large fields of algebraic numbers

Arno Fehm
(Konstanz)
Abstract

   I will present a decidability result for theories of large fields of algebraic numbers, for example certain subfields of the field of totally real algebraic numbers. This result has as special cases classical theorems of Jarden-Kiehne, Fried-Haran-Völklein, and Ershov.

   The theories in question are axiomatized by Galois theoretic properties and geometric local-global principles, and I will point out the connections with the seminal work of Ax on the theory of finite fields.

Thu, 27 Jan 2011
17:00
L3

tba

Arno Fehm
(Konstanz)
Thu, 27 Jan 2011

16:00 - 17:00
DH 1st floor SR

Stochastic simulation algorithms for reaction-diffusion systems

Radek Erban
(Oxford)
Abstract

Several stochastic simulation algorithms (SSAs) have been recently proposed for modelling reaction-diffusion processes in cellular and molecular biology. In this talk, two commonly used SSAs will be studied. The first SSA is an on-lattice model described by the reaction-diffusion master equation. The second SSA is an off-lattice model based on the simulation of Brownian motion of individual molecules and their reactive collisions. The connections between SSAs and the deterministic models (based on reaction-diffusion PDEs) will be presented. I will consider chemical reactions both at a surface and in the bulk. I will show how the "microscopic" parameters should be chosen to achieve the correct "macroscopic" reaction rate. This choice is found to depend on which SSA is used. I will also present multiscale algorithms which use models with a different level of detail in different parts of the computational domain.

Thu, 27 Jan 2011

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Backward Perturbation Analysis of Linear Least Squares Problems

Dr David Titley-Peloquin
(University of Oxford)
Abstract

We consider the iterative solution of large sparse linear least squares (LS) problems. Specifically, we focus on the design and implementation of reliable stopping criteria for the widely-used algorithm LSQR of Paige and Saunders. First we perform a backward perturbation analysis of the LS problem. We show why certain projections of the residual vector are good measures of convergence, and we propose stopping criteria that use these quantities. These projections are too expensive to compute to be used directly in practice. We show how to estimate them efficiently at every iteration of the algorithm LSQR. Our proposed stopping criteria can therefore be used in practice.

This talk is based on joint work with Xiao-Wen Chang, Chris Paige, Pavel Jiranek, and Serge Gratton.

Thu, 27 Jan 2011

13:00 - 14:00
SR1

Homological stability of configuration spaces

Martin Palmer
(University of Oxford)
Abstract

I will first introduce and motivate the notion of 'homological stability' for a sequence of spaces and maps. I will then describe a method of proving homological stability for configuration spaces of n unordered points in a manifold as n goes to infinity (and applications of this to sequences of braid groups). This method also generalises to the situation where the configuration has some additional local data: a continuous parameter attached to each point.

However, the method says nothing about the case of adding global data to the configurations, and indeed such configuration spaces rarely do have homological stability. I will sketch a proof -- using an entirely different method -- which shows that in some cases, spaces of configurations with additional global data do have homological stability. Specifically, this holds for the simplest possible global datum for a configuration: an ordering of the points up to even permutations. As a corollary, for example, this proves homological stability for the sequence of alternating groups.

Wed, 26 Jan 2011

16:00 - 17:00
SR2

Rips' Machine

Nicholas Touikan
(Oxford University)
Wed, 26 Jan 2011

11:30 - 12:30
ChCh, Tom Gate, Room 2

Finite metric spaces

David Hume
(University of Oxford)
Abstract

Many problems in computer science can be modelled as metric spaces, whereas for mathematicians they are more likely to appear as the opening question of a second year examination. However, recent interesting results on the geometry of finite metric spaces have led to a rethink of this position. I will describe some of the work done and some (hopefully) interesting and difficult open questions in the area.

Tue, 25 Jan 2011

15:45 - 16:45
L3

(HoRSe seminar) Localized virtual cycles, and applications to GW and DT invariants II

Jun Li
(Stanford)
Abstract

We first present the localized virtual cycles by cosections of obstruction sheaves constructed by Kiem and Li. This construction has two kinds of applications: one is define invariants for non-proper moduli spaces; the other is to reduce the obstruction classes. We will present two recent applications of this construction: one is the Gromov-Witten invariants of stable maps with fields (joint work with Chang); the other is studying Donaldson-Thomas invariants of Calabi-Yau threefolds (joint work with Kiem).

Tue, 25 Jan 2011

14:00 - 15:00
SR1

(HoRSe seminar) Localized virtual cycles, and applications to GW and DT invariants I

Jun Li
(Stanford)
Abstract

We first present the localized virtual cycles by cosections of obstruction sheaves constructed by Kiem and Li. This construction has two kinds of applications: one is define invariants for non-proper moduli spaces; the other is to reduce the obstruction classes. We will present two recent applications of this construction: one is the Gromov-Witten invariants of stable maps with fields (joint work with Chang); the other is studying Donaldson-Thomas invariants of Calabi-Yau threefolds (joint work with Kiem).

Tue, 25 Jan 2011
13:15
DH 1st floor SR

Human sperm migration: Observation and Theory

Hermes Gadelha
(CMB)
Abstract

Abstract: Flagella and cilia are ubiquitous in biology as a means of motility and critical for male gametes migration in reproduction, to mucociliary clearance in the lung, to the virulence of devastating parasitic pathogens such as the Trypanosomatids, to the filter feeding of the choanoflagellates, which are constitute a critical link in the global food chain. Despite this ubiquity and importance, the details of how the ciliary or flagellar waveform emerges from the underlying mechanics and how the cell, or the environs, may control the beating pattern by regulating the axoneme is far from fully understood. We demonstrate in this talk that mechanics and modelling can be utilised to interpret observations of axonemal dynamics, swimming trajectories and beat patterns for flagellated motility impacts on the science underlying numerous areas of reproductive health, disease and marine ecology. It also highlights that this is a fertile and challenging area of inter-disciplinary research for applied mathematicians and demonstrates the importance of future observational and theoretical studies in understanding the underlying mechanics of these motile cell appendages.

Mon, 24 Jan 2011

17:00 - 18:00
Gibson 1st Floor SR

Slowly varying in one direction global solution of the incompressible Navier-Stokes system

Jean-Yves Chemin
(Universite Pierre et Marie Curie)
Abstract

The purpose of this talk is to provide a large class of examples of large initial data which gives rise to a global smooth solution. We shall explain what we mean by large initial data. Then we shall explain the concept of slowly varying function and give some flavor of the proofs of global existence.

Mon, 24 Jan 2011
15:45
Eagle House

The expected signature of brownian motion upon the first exit time of a regular domain

Ni Hao
Abstract

The signature of the path is an essential object in rough path theory which takes value in tensor algebra and it is anticipated that the expected signature of Brownian motion might characterize the rough path measure of Brownian path itself. In this presentation we study the expected signature of a Brownian path in a Bananch space E stopped at the first exit time of an arbitrary regular domain, although we will focus on the case E=R^{2}. We prove that such expected signature of Brownian motion should satisfy one particular PDE and using the PDE for the expected signature and the boundary condition we can derive each term of expected signature recursively. We expect our method to be generalized to higher dimensional case in R^{d}, where d is an integer and d >= 2.

Mon, 24 Jan 2011

15:45 - 16:45
L3

A sampler of (algebraic) quantum field theory

Andre Henriques
(Universiteit Utrecht)
Abstract
Roughly speaking, a quantum field theory is a gadget that assigns algebraic data to manifolds. The kind of algebraic data depends on the dimension of the manifold.

Conformal nets are an example of this kind of structure. Given a conformal net, one can assigns a von Neumann algebra to any 1-dimensional manifold, and (at least conjecturally) a Hilbert space to any 2-dimensional Riemann surfaces.

I will start by explaining what conformal nets are. I will then give some examples of conformal net: the ones associated to loop groups of compact Lie groups. Finally, I will present a new proof of a celebrated result of Kawahigashi, Longo, and
Mueger:
The representation category of a conformal net (subject to appropriate finiteness conditions) is a modular tensor category.

All this is related to my ongoing research projects with Chris Douglas and Arthur Bartels, in which we investigate conformal nets from a category
theoretical
perspective.