15:45
Decomposition complexity of metric spaces
Abstract
I shall describe the notion of finite decomposition complexity (FDC), introduced in joint work with Romain Tessera and Guoliang Yu on the Novikov and related conjectures. The talk will focus on the definition of FDC and examples of groups having FDC.
15:45
Quantum Networks and Classical Self-Avoiding Random Walks
Abstract
In a quantum network model, unitary matrices are assigned to each edge and node of a graph. The quantum amplitude for a particle to propagate from node A to node B is the sum over all random walks (Feynman paths) from A to B, each walk being weighted by the ordered product of matrices along the path. In most cases these models are too difficult to solve analytically, but I shall argue that when the matrices are random elements of SU("), independently drawn from the invariant measure on that group, then averages of these quantum amplitudes are equal to the probability that a certain kind of self-avoiding *classical* random walk reaches B when started at A. This leads to various conjectures about the generic behaviour of such network models on regular lattices in two and three dimensions.
14:15
$\pi$-convergence: The dynamics of isometries of Hadamard spaces on the boundary
Abstract
It a classical result from Kleinian groups that a discrete group, $G$, of isometries of hyperbolic k-space $\Bbb H^k$ will act on the
boundary sphere, $S^{k-1}$, of $\Bbb H^k$ as a convergence group.
That is:
For every sequence of distinct isometries $(g_i)\subset G$ there is a subsequence ${g_i{_j})$ and points $n,p \in \S^{k-1}$ such that for $ x \in S^{k-1} -\{n\}$, $g_i_{j}(x) \to p$ uniformly on compact subsets
Mathematical exploration of the ergodicity of Nose-Hoover dynamics
Abstract
The accuracy of the Nos-Hoover thermostat to sample the Gibbs measure depends on the
dynamics being ergodic. It has been observed for a long time that this dynamics is
actually not ergodic for some simple systems, such as the harmonic oscillator.
In this talk, we rigourously prove the non-ergodicity of the Nos-Hoover thermostat, for
the one-dimensional harmonic oscillator.
We will also show that, for some multidimensional systems, the averaged dynamics for the limit
of infinite thermostat "mass" has many invariants, thus giving
theoretical support for either non-ergodicity or slow ergodization.
Our numerical experiments for a two-dimensional central force problem
and the one-dimensional pendulum problem give evidence for
non-ergodicity.
We also present numerical experiments for the Nose-Hoover chain with
two thermostats applied to the one-dimensional harmonic
oscillator. These experiments seem to support the non-ergodicity of the
dynamics if the masses of the reservoirs are large enough and are
consistent with ergodicity for more moderate masses.
Joint work with Frederic Legoll and Richard Moeckel
Towards a framework for nonextensive nonlinear signal processing
14:30
17:00
SUPERSIMPLE MOUFANG POLYGONS
Abstract
In this talk we discuss the main results of my PhD thesis. We begin by giving some background on Moufang polygons. This is followed by a short introduction of the basic model theoretic notions related to the thesis, such as asymptotic classes of finite structures, measurable structures, (superstable) supersimple theories and (finite Morley rank) S_1 rank. We also mention the relation between Moufang polygons and the associated little projective groups.
Moufang polygons have been classified by Tits and Weiss, and a complete list is given in their book `Moufang polygons'.
This work is inspired by a paper of Kramer, Tent and van Maldeghem called "Simple groups of finite Morley rank and Tits buildings". The authors work in a superstable context. They show that Moufang polygons of finite Morley rank are exactly Pappian polygons, i.e., projective planes, symplectic quadrangles and split Cayley hexagons, provided that they arise over algebraically closed fields.
We work under the weaker assumption of supersimplicity. Therefore, we expect more examples. Indeed, apart from those already occuring in the finite Morley rank case, there are four further examples, up to duality, of supersimple Moufang polygons; namely, Hermitian quadrangles in projective dimension 3 and 4, the twisted triality hexagon and the (perfect) Ree-Tits octagon, provided that the underlying field (or `difference' field in the last case) is supersimple.
As a result, we obtain the nice characterization that supersimple Moufang polygons are exactly those Moufang polygons belonging to families which also arise over finite fields.
Examples of supersimple Moufang polygons are constructed via asymptoticity
arguments: every class C of finite Moufang polygons forms an asymptotic class, and every non-principal ultraproduct of C gives rise to a measurable structure, thus supersimple (of finite S_1 rank). For the remaining cases one can proceed as follows: let \Gamma be any Moufang polygon belonging to a family which does not arise over finite fields, and call K its underlying field; then K is
(first-order) definable in \Gamma, and by applying some model theoretic facts this definability is inconsistent with supersimplicity".
Scattering waves in elastic waveguides
Abstract
Layered (or laminated) structures are increasingly used in modern industry (e.g., in microelectronics and aerospace engineering). Integrity of such structures is mainly determined by the quality of their interfaces: poor adhesion or delamination can lead to a catastrophic failure of the whole structure. Can nonlinear waves help us to detect such defects? We study the dynamics of a nonlinear longitudinal bulk strain wave in a split, layered elastic bar, made of nonlinearly hyperelastic Murnaghan material. We consider a symmetric two-layered bar and assume that there is perfect interface for x 0, where the x-axis is directed along the bar. Using matched asymptotic multiple-scales expansions and the integrability theory of the KdV equation by the Inverse Scattering Transform, we examine scattering of solitary waves and show that the defect causes generation of more than one secondary solitary waves from a single incident soliton and, thus, can be used to detect the defect. The theory is supported by experimental results. Experiments have been performed in the Ioffe Institute in St. Petersburg (Russia), using holographic interferometry and laser induced generation of an incident compression solitary wave in two- and three-layered polymethylmethacrylate (PMMA) bars, bonded using ethyl cyanoacrylate-based (CA) adhesive.
16:00
Structure of some integral Galois representations
Abstract
Artin formalism gives an equality of certain L-functions of elliptic curves or of zeta-functions of number fields. When combined with the Birch and Swinnerton-Dyer conjecture, this can give interesting results about the Galois module structure of the Selmer group of an elliptic curve. When combined with the analytic class number formula, this can help determine the Galois module structure of the group of units of a number field. In this talk, I will introduce the main technique, which is completely representation theoretic, for extracting such information
Approximate Gauss-Newton methods using reduced order models
Abstract
Work with N.K. Nichols (Reading), C. Boess & A. Bunse-Gerstner (Bremen)
The Gauss-Newton (GN) method is a well known iterative technique for solving nonlinear least squares problems subject to dynamical system constraints. Such problems arise commonly from applications in optimal control and state estimation. Variational data assimilation systems for weather, ocean and climate prediction currently use approximate GN methods. The GN method solves a sequence of linear least squares problems subject to linearized system constraints. For very large systems, low resolution linear approximations to the model dynamics are used to improve the efficiency of the algorithm. We propose a new method for deriving low order system approximations based on model reduction techniques from control theory. We show how this technique can be combined with the GN method to give a state estimation technique that retains more of the dynamical information of the full system. Numerical experiments using a shallow-water model illustrate the superior performance of model reduction to standard truncation techniques.
On fronts in a vanishing-viscosity limit
Abstract
Scalar balance laws with monostable reaction, possibly non-convex flux, and
viscosity $\varepsilon$ are known to admit so-called entropy travelling fronts for all velocities greater than or equal to an $\varepsilon$-dependent minimal value, both when $\varepsilon$ is positive, when all fronts are smooth, and for $\varepsilon =0$, when the possibly non-convex flux results in fronts of speed close to the minimal value typically having discontinuities where jump conditions hold.
I will discuss the vanishing-viscosity limit of these fronts.
11:00
Model Theory of the ring of adeles
Abstract
I shall discuss joint work with Angus Macintyre on the model theory of the ring of adeles of a number field
11:00
Multiscale Models in Solid Mechanics
Abstract
Macroscopic properties of solids are inherently connected to their micro- and nano-scale details. For example, the microstructure and defect distribution influence the elastic and plastic properties of a crystal while the details of a defect are determined by its elastic far-field. The goal of multi-scale modelling is to understand such connections between microscopic and macroscopic material behaviour. This workshop brings together researchers working on different aspects of multi-scale modelling of solids: mathematical modelling, analysis, numerical computations, and engineering applications.
16:30
The alpha model - an energy conserving turbulence closure
Approximate groups
Abstract
Let $A$ be a finite set in some ambient group. We say that $A$ is a $K$-approximate group if $A$ is symmetric and if the set $A.A$ (the set of all $xy$, where $x$, $y$ lie in $A$) is covered by $K$ translates of $A$. I will illustrate this notion by example, and will go on to discuss progress on the "rough classification" of approximate groups in various settings: abelian groups, nilpotent groups and matrix groups of fixed dimension. Joint work with E. Breuillard.
12:00
A black hole uniqueness theorem.
Abstract
Klainerman on the black hole uniqueness problem. A classical result of
Hawking (building on earlier work of Carter and Robinson) asserts that any
vacuum, stationary black hole exterior region must be isometric to the
Kerr exterior, under the restrictive assumption that the space-time metric
should be analytic in the entire exterior region.
We prove that Hawking's theorem remains valid without the assumption of
analyticity, for black hole exteriors which are apriori assumed to be "close"
to the Kerr exterior solution in a very precise sense. Our method of proof
relies on certain geometric Carleman-type estimates for the wave operator.