Tue, 18 Jun 2019

14:30 - 15:00
L3

PathFinder: a toolbox for oscillatory quadrature

Andrew Gibbs
(KU Leuven)
Abstract

Highly oscillatory integrals arise in a range of wave-based problems. For example, they may occur when a basis for a boundary element has been enriched with oscillatory functions, or as part of a localised approximation to various short-wavelength phenomena. A range of contemporary methods exist for the efficient evaluation of such integrals. These methods have been shown to be very effective for model integrals, but may require expertise and manual intervention for
integrals with higher complexity, and can be unstable in practice.

The PathFinder toolbox aims to develop robust and fully automated numerical software for a large class of oscillatory integrals. In this talk I will introduce the method of numerical steepest descent (the technique upon which PathFinder is based) with a few simple examples, which are also intended to highlight potential causes for numerical instability or manual intervention. I will then explain the novel approaches that PathFinder uses to avoid these. Finally I will present some numerical examples, demonstrating how to use the toolbox, convergence results, and an application to the parabolic wave equation.

Tue, 18 Jun 2019

14:30 - 15:30
L6

Enumerating graphs and other discrete structures by degree sequence

Anita Liebenau
Further Information

How many d-regular graphs are there on n vertices? What is the probability that G(n,p) has a specific given degree sequence? 

Asymptotic formulae for the first question are known when d=o(\sqrt(n)) and when d= \Omega(n). More generally, asymptotic formulae are known for 
the number of graphs with a given degree sequence, for a range of degree sequences that is wide enough to deduce asymptotic formulae for the second 
question for p =o(1/o(\sqrt(n))) and p = Theta(1).  

McKay and Wormald showed that the formulae for the sparse case and the 
dense case can be cast into a common form, and then conjectured in 1990 and 1997 that the same formulae should hold for the gap range. A particular consequence of both conjectures is that the degree sequence of the random graph G(n,p) can be approximated by a sequence of n independent 
binomial variables Bin(n − 1, p'). 

In 2017, Nick Wormald and I proved both conjectures. In this talk I will describe the problem and survey some of the earlier methods to showcase the differences to our new methods. I shall also report on enumeration results of other discrete structures, such as bipartite graphs and hypergraphs, that are obtained by adjusting our methods to those settings. 

Tue, 18 Jun 2019

14:15 - 15:15
L4

The congruence subgroup problem for a family of branch groups

Rachel Skipper
(Lyon)
Abstract

A group acting on a regular rooted tree has the congruence subgroup property if every subgroup of finite index contains a level stabilizer. The congruence subgroup problem then asks to quantitatively describe the kernel of the surjection from the profinite completion to the topological closure as a subgroup of the automorphism group of the tree. We will study the congruence subgroup property for a family of branch groups whose construction generalizes that of the Hanoi Towers group, which models the game “The Towers of Hanoi".

 

Tue, 18 Jun 2019

14:00 - 14:30
L3

Improving the scalability of derivative-free optimisation for nonlinear least-squares problems

Lindon Roberts
(Oxford)
Abstract

In existing techniques for model-based derivative-free optimisation, the computational cost of constructing local models and Lagrange polynomials can be high. As a result, these algorithms are not as suitable for large-scale problems as derivative-based methods. In this talk, I will introduce a derivative-free method based on exploration of random subspaces, suitable for nonlinear least-squares problems. This method has a substantially reduced computational cost (in terms of linear algebra), while still making progress using few objective evaluations.

Tue, 18 Jun 2019

12:45 - 14:00
C3

Multi-armed bandit under uncertainty

Tanut Treetanthiploet
((Oxford University))
Abstract

In a robust decision, we are pessimistic toward our decision making when the probability measure is unknown. In particular, we optimise our decision under the worst case scenario (e.g. via value at risk or expected shortfall).  On the other hand, most theories in reinforcement learning (e.g. UCB or epsilon-greedy algorithm) tell us to be more optimistic in order to encourage learning. These two approaches produce an apparent contradict in decision making. This raises a natural question. How should we make decisions, given they will affect our short-term outcomes, and information available in the future?

In this talk, I will discuss this phenomenon through the classical multi-armed bandit problem which is known to be solved via Gittins' index theory under the setting of risk (i.e. when the probability measure is fixed). By extending this result to an uncertainty setting, we can show that it is possible to take into account both uncertainty and learning for a future benefit at the same time. This can be done by extending a consistent nonlinear expectation  (i.e. nonlinear expectation with tower property) through multiple filtrations.

At the end of the talk, I will present numerical results which illustrate how we can control our level of exploration and exploitation in our decision based on some parameters.
 

Tue, 18 Jun 2019
12:00
L3

Wilson-loop form-factors, a new duality

Dr Paul Heslop
(Durham)
Abstract

We find a new duality for form factors of lightlike Wilson loops in planar N=4 super-Yang-Mills theory. The duality maps a form factor involving an n-sided lightlike polygonal super-Wilson loop together with m external on-shell states, to the same type of object but with the edges of the Wilson loop and the external states swapping roles. This relation can essentially be seen graphically in Lorentz harmonic chiral (LHC) superspace where it is equivalent to planar graph duality. However there are some crucial subtleties with the cancellation of spurious poles due to the gauge fixing. They are resolved by finding the correct formulation of the Wilson loop and by careful analytic continuation from Minkowski to Euclidean space. We illustrate all of these subtleties explicitly in the simplest non-trivial NMHV-like case.

Tue, 18 Jun 2019

12:00 - 13:00
C4

Chasing memories

Anita Mehta
(Somerville College)
Abstract

Short- and long-term memories are distinguished by their forgettability. Most of what we perceive and store is lost rather quickly to noise, as new sensations replace older ones, while some memories last for as long as we live. Synaptic dynamics is key to the process of memory storage; in this talk I will discuss a few approaches we have taken to this problem, culminating in a model of synaptic networks containing both cooperative and competitive dynamics. It turns out that the competitionbetween synapses is key to the natural emergence of long-term memory in this model, as in reality.

References
​Mehta, Anita. "Storing and retrieving long-term memories: cooperation and competition in synaptic dynamics." Advances in Physics: X 3.1 (2018): 1480415.

Mon, 17 Jun 2019
15:45
L6

The Teichmüller TQFT volume conjecture for twist knots

Fathi Ben Aribi
(Geneva)
Abstract

(joint work with E. Piguet-Nakazawa)

In 2014, Andersen and Kashaev defined an infinite-dimensional TQFT from quantum Teichmüller theory. This Teichmüller TQFT is an invariant of triangulated 3-manifolds, in particular knot complements.

The associated volume conjecture states that the Teichmüller TQFT of an hyperbolic knot complement contains the volume of the knot as a certain asymptotical coefficient, and Andersen-Kashaev proved this conjecture for the first two hyperbolic knots.

In this talk I will present the construction of the Teichmüller TQFT and how we approached this volume conjecture for the infinite family of twist knots, by constructing new geometric triangulations of the knot complements.

No prerequisites in Quantum Topology are needed.

Mon, 17 Jun 2019

15:45 - 16:45
L3

Mathematical and computational challenges in interdisciplinary bioscience: efficient approaches for stochastic models of biological processes.

RUTH BAKER
(University of Oxford)
Abstract

Simple mathematical models have had remarkable successes in biology, framing how we understand a host of mechanisms and processes. However, with the advent of a host of new experimental technologies, the last ten years has seen an explosion in the amount and types of data now being generated. Increasingly larger and more complicated processes are now being explored, including large signalling or gene regulatory networks, and the development, dynamics and disease of entire cells and tissues. As such, the mechanistic, mathematical models developed to interrogate these processes are also necessarily growing in size and complexity. These detailed models have the potential to provide vital insights where data alone cannot, but to achieve this goal requires meeting significant mathematical challenges. In this talk, I will outline some of these challenges, and recent steps we have taken in addressing them.

Mon, 17 Jun 2019

14:15 - 15:15
L3

Path Developments and Tail Asymptotics of Signature

XI GENG
(University of Melbourne)
Abstract

It is well known that a rough path is uniquely determined by its signature (the collection of global iterated path integrals) up to tree-like pieces. However, the proof the uniqueness theorem is non-constructive and does not give us information about how quantitative properties of the path can be explicitly recovered from its signature. In this talk, we examine the quantitative relationship between the local p-variation of a rough path and the tail asymptotics of its signature for the simplest type of rough paths ("line segments"). What lies at the core of the work a novel technique based on the representation theory of complex semisimple Lie algebras. 

This talk is based on joint work with Horatio Boedihardjo and Nikolaos Souris

Mon, 17 Jun 2019

14:15 - 15:15
L4

Bryant-Salamon metrics and coassociative fibrations

Jason Lotay
(Oxford)
Abstract

The first examples of complete holonomy G2 metrics were constructed by Bryant-Salamon and are thus of central importance in geometry, but also in physics, appearing for example in the work of Atiyah-Witten, Acharya-Witten and Acharya-Gukov.   I will describe joint work in progress with Spiro Karigiannis which realises Bryant-Salamon manifolds in dimension 7 as coassociative fibrations.  In particular, I will discuss the relationship of this study to gravitational instantons, conical singularities, and to recent work of Donaldson and Joyce-Karigiannis.

 

Fri, 14 Jun 2019

16:00 - 17:00
L1

Old and new on crystalline cohomology and the de Rham-Witt complex

Luc Illusie
(Université de Paris-Sud, Orsay)
Abstract

The subject of $p$-adic cohomologies is over fifty years old. Many new developments have recently occurred. I will mostly limit myself to discussing some pertaining to the de Rham-Witt complex. After recalling the historical background and the basic results, I will give an overview of the new approach of Bhatt, Lurie and Mathew.

Fri, 14 Jun 2019

15:00 - 16:00
N3.12

Multiparameter persistence vs parametrised persistence

Jeffrey Giansiracusa
(Swansea University)
Abstract

One of the key properties of 1-parameter persistent homology is that its output can entirely encoded in a purely combinatorial way via persistence diagrams or barcodes.  However, many applications of topological data analysis naturally present themselves with more than 1 parameter. Multiparameter persistence suggests itself as the natural invariant to use, but the problem here is that the moduli space of multiparameter persistence diagrams has a much more complicated structure and we lack a combinatorial diagrammatic description.  An alternative approach was suggested by work of Giansiracusa-Moon-Lazar, where they investigated calculating a series of 1-parameter persistence diagrams as the other parameter is varied. In this talk I will discuss work in progress to produce a refinement of their perspective, making use the Algebraic Stability Theorem for persistent homology and work of Bauer-Lesnick on induced matchings.

Fri, 14 Jun 2019

14:00 - 15:00
L2

Reactions, diffusion and volume exclusion in a heterogeneous system of interacting particles

Dr Maria Bruna
(Mathematical Institute University of Oxford)
Abstract


Cellular migration can be affected by short-range interactions between cells such as volume exclusion, long-range forces such as chemotaxis, or reactions such as phenotypic switching. In this talk I will discuss how to incorporate these processes into a discrete or continuum modelling frameworks. In particular, we consider a system with two types of diffusing hard spheres that can react (switch type) upon colliding. We use the method of matched asymptotic expansions to obtain a systematic model reduction, consisting of a nonlinear reaction-diffusion system of equations. Finally, we demonstrate how this approach can be used to study the effects of excluded volume on cellular chemotaxis. This is joint work with Dan Wilson and Helen Byrne.
 

Fri, 14 Jun 2019

12:00 - 13:00
L4

A neural network approach to SLV Calibration

Wahid Khosrawi
(ETH Zurich)
Abstract

 A central task in modeling, which has to be performed each day in banks and financial institutions, is to calibrate models to market and historical data. So far the choice which models should be used was not only driven by their capacity of capturing empirically the observed market features well, but rather by computational tractability considerations. Due to recent work in the context of machine learning, this notion of tractability has changed significantly. In this work, we show how a neural network approach can be applied to the calibration of (multivariate) local stochastic volatility models. We will see how an efficient calibration is possible without the need of interpolation methods for the financial data. Joint work with Christa Cuchiero and Josef Teichmann.

Fri, 14 Jun 2019

10:00 - 11:00
L2

Robust Identification of Drones and UAVs in the Air Space for Improving Public Safety and Security

Jahangir Mohammed
(Thales (Aveillant))
Abstract

The disruptive drone activity at airports requires an early warning system and Aveillant make a radar system that can do the job. The main problem is telling the difference between birds and drones where there may be one or two drones and 10s or 100s of birds. There is plenty of data including time series for how the targets move and the aim is to improve the discrimination capability of tracker using machine learning.

Specifically, the challenge is to understand whether there can be sufficient separability between birds and drones based on different features, such as flight profiles, length of the track, their states, and their dominance/correlation in the overall discrimination. Along with conventional machine learning techniques, the challenge is to consider how different techniques, such as deep neural networks, may perform in the discrimination task.

Fri, 14 Jun 2019

09:30 - 18:30
L3

19th Oxford Cambridge Applied Maths Meeting (aka The Woolly Owl)

Further Information

[[{"fid":"54202","view_mode":"media_square","fields":{"format":"media_square","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"1":{"format":"media_square","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"class":"media-element file-media-square","data-delta":"1"}}]]

 

Thu, 13 Jun 2019

16:00 - 17:00
L6

Arakelov theory on degenerating curves

Gerd Faltings
(University of Bonn and MPIM)
Abstract

We compute the asymptotics of Arakelov functions if smooth curves degenerate to semistable singular curves. The motivation was to determine whether the delta function defines a metric on the boundary of moduli space. In fact things are slightly more complicated. The main result states that the asymptotics is mostly governed by the graph associated to the degeneration, with some subleties. The topic has been also treated by R. deJong and my student R. Wilms.

Thu, 13 Jun 2019
16:00
C4

The signature obstruction to finding characteristic classes for manifold bundles

Jan Steinebrunner
(Oxford University)
Abstract

A cohomology class on the diffeomorphism group Diff(M) of a manifold M

can be thought of as a characteristic class for smooth M-bundles.
I will survey a technique for producing examples of such classes,
and then explain how the signature (of 4-manifolds) provides an
obstruction to this technique in dimension 3.

I will define Miller-Morita-Mumford classes and explain how we can
think of them as coming from classes on the cobordism category.
Madsen and Weiss showed that for a surface S of genus g all cohomology
classes
of the mapping class group MCG(S) (of degree < 2(g-2)/3) are MMM-classes.
This technique has been successfully ported to higher even dimensions d= 2n,
but it cannot possibly work in odd dimensions:
a theorem of Ebert says that for d=3 all MMM-classes are trivial.
In the second part of my talk I will sketch a new proof of (a part of)
Ebert's theorem.
I first recall the definition of the signature sign(W) of a 4 manifold W,
and some of its properties, such as additivity with respect to gluing.
Using the signature and an idea from the world of 1-2-3-TQFTs,
I then go on to define a 'central extension' of the three dimensional
cobordism category.
This central extension corresponds to a 2-cocycle on the 3d cobordism
category,
and we will see that the construction implies that the associated MMM-class
has to vanish on all 3-dimensional manifold bundles.

Thu, 13 Jun 2019

16:00 - 17:30
L3

Multiscale Modelling of Tendon Mechanics

Dr Tom Shearer
(University of Manchester)
Abstract

Tendons are vital connective tissues that anchor muscle to bone to allow the transfer of forces to the skeleton. They exhibit highly non-linear viscoelastic mechanical behaviour that arises due to their complex, hierarchical microstructure, which consists of fibrous subunits made of the protein collagen. Collagen molecules aggregate to form fibrils with diameters of tens to hundreds of nanometres, which in turn assemble into larger fibres called fascicles with diameters of tens to hundreds of microns. In this talk, I will discuss the relationship between the three-dimensional organisation of the fibrils and fascicles and the macroscale mechanical behaviour of the tendon. In particular, I will show that very simple constitutive behaviour at the microscale can give rise to highly non-linear behaviour at the macroscale when combined with geometrical effects.

 

Thu, 13 Jun 2019
14:00
L3

Affine Hecke Algebras for p-adic classical groups, local Langlands correspondence and unipotent representations

Volker Heiermann
(Université d'Aix-Marseille)
Abstract

I will review the equivalence of categories of a Bernstein component of a p-adic classical group with the category of right modules over a certain affine Hecke algebra (with parameters) that I obtained previously. The parameters can be made explicit by the parametrization of supercuspidal representations of classical groups obtained by C. Moeglin, using methods of J. Arthur. Via this equivalence, I can show that the category of smooth complex representations of a quasisplit $p$-adic classical group and its pure inner forms is naturally decomposed into subcategories that are equivalent to the tensor product of categories of unipotent representations of classical groups (in the sense of G. Lusztig). All classical groups (general linear, orthogonal, symplectic and unitary groups) appear in this context.
 

Thu, 13 Jun 2019

14:00 - 15:00
L4

A structure-preserving finite element method for uniaxial nematic liquid crystals

Professor Ricardo Nochetto
(University of Maryland)
Abstract

The Landau-DeGennes Q-model of uniaxial nematic liquid crystals seeks a rank-one

traceless tensor Q that minimizes a Frank-type energy plus a double well potential

that confines the eigenvalues of Q to lie between -1/2 and 1. We propose a finite

element method (FEM) which preserves this basic structure and satisfies a discrete

form of the fundamental energy estimates. We prove that the discrete problem Gamma

converges to the continuous one as the meshsize tends to zero, and propose a discrete

gradient flow to compute discrete minimizers. Numerical experiments confirm the ability

of the scheme to approximate configurations with half-integer defects, and to deal with

colloidal and electric field effects. This work, joint with J.P. Borthagaray and S.

Walker, builds on our previous work for the Ericksen's model which we review briefly.

Thu, 13 Jun 2019

12:00 - 13:00
L4

On the scaling limit of Onsager's molecular model for liquid crystals

Yuning Liu
(NYU Shanghai)
Abstract

We study the small Deborah number limit of the Doi-Onsager equation for the dynamics of nematic liquid crystals. This is a Smoluchowski-type equation that characterizes the evolution of a number density function, depending upon both particle position and its orientation vector, which lies on the unit sphere. We prove that, in the low temperature regime, when the Deborah number tends to zero, the family of solutions with rough initial data near local equilibria will converge to a local equilibrium distribution prescribed by a weak solution of the harmonic map heat flow into the sphere. This flow is a special case of the gradient flow to the Oseen-Frank energy functional for nematic liquid crystals and the existence of its global weak solution was first obtained by Y.M Chen, using Ginzburg-Landau approximation.  The key ingredient of our result is to show the strong compactness of the family of number density functions and the proof relies on the strong compactness of the corresponding second moment (or the Q-tensor), a spectral decomposition of the linearized operator near the limiting local equilibrium distribution, as well as the energy dissipation estimates.  This is a joint work with Wei Wang in Zhejiang university.