Tue, 20 Nov 2018
14:30
L6

On the rational Turán exponents conjecture

Dongyeap Kang
(KAIST)
Abstract

The extremal number ${\rm ex}(n,F)$ of a graph $F$ is the maximum number of edges in an $n$-vertex graph not containing $F$ as a subgraph. A real number $r \in [0,2]$ is realisable if there exists a graph $F$ with ${\rm ex}(n , F) = \Theta(n^r)$. Several decades ago, Erdős and Simonovits conjectured that every rational number in $[1,2]$ is realisable. Despite decades of effort, the only known realisable numbers are $0,1, \frac{7}{5}, 2$, and the numbers of the form $1+\frac{1}{m}$, $2-\frac{1}{m}$, $2-\frac{2}{m}$ for integers $m \geq 1$. In particular, it is not even known whether the set of all realisable numbers contains a single limit point other than two numbers $1$ and $2$.

We discuss some progress on the conjecture of Erdős and Simonovits. First, we show that $2 - \frac{a}{b}$ is realisable for any integers $a,b \geq 1$ with $b>a$ and $b \equiv \pm 1 ~({\rm mod}\:a)$. This includes all previously known ones, and gives infinitely many limit points $2-\frac{1}{m}$ in the set of all realisable numbers as a consequence. Secondly, we propose a conjecture on subdivisions of bipartite graphs. Apart from being interesting on its own, we show that, somewhat surprisingly, this subdivision conjecture in fact implies that every rational number between 1 and 2 is realisable.

This is joint work with Jaehoon Kim and Hong Liu.

Tue, 20 Nov 2018
14:15
L4

A Beilinson-Bernstein Theorem for p-adic analytic quantum groups

Nicolas Dupre
(Cambridge)
Abstract

The celebrated localisation theorem of Beilinson-Bernstein asserts that there is an equivalence between representations of a Lie algebra and modules over the sheaf of differential operators on the corresponding flag variety. In this talk we discuss certain analogues of this result in various contexts. Namely, there is a localisation theorem for quantum groups due to Backelin and Kremnizer and, more recently, Ardakov and Wadsley also proved a localisation theorem working with certain completed enveloping algebras of p-adic Lie algebras. We then explain how to combine the ideas involved in these results to construct
a p-adic analytic quantum flag variety and a category of D-modules on it, and we show that the global section functor on these D-modules yields an equivalence of categories.

Tue, 20 Nov 2018

14:00 - 14:30
L5

A block preconditioner for non-isothermal flow in porous media

Thomas Roy
(Oxford)
Abstract


In petroleum reservoir simulation, the standard preconditioner is a two-stage process which involves solving a restricted pressure system with AMG. Initially designed for isothermal models, this approach is often used in the thermal case. However, it does not incorporate heat diffusion or the effects of temperature changes on fluid flow through viscosity and density. We seek to develop preconditioners which consider this cross-coupling between pressure and temperature. In order to study the effects of both pressure and temperature on fluid and heat flow, we first consider a model of non-isothermal single phase flow through porous media. For this model, we develop a block preconditioner with an efficient Schur complement approximation. Then, we extend this method for multiphase flow as a two-stage preconditioner.

Tue, 20 Nov 2018

12:00 - 13:15
L4

A PDE construction of the Euclidean $\Phi^4_3$ quantum field theory

Martina Hofmanova
(Bielefeld and visiting Newton Institute)
Abstract

We present a self-contained construction of the Euclidean $\Phi^4$ quantum
field theory on $\mathbb{R}^3$ based on PDE arguments. More precisely, we
consider an approximation of the stochastic quantization equation on
$\mathbb{R}^3$ defined on a periodic lattice of mesh size $\varepsilon$ and
side length $M$. We introduce an energy method and prove tightness of the
corresponding Gibbs measures as $\varepsilon \rightarrow 0$, $M \rightarrow
\infty$. We show that every limit point satisfies reflection positivity,
translation invariance and nontriviality (i.e. non-Gaussianity). Our
argument applies to arbitrary positive coupling constant and also to
multicomponent models with $O(N)$ symmetry. Joint work with Massimiliano
Gubinelli.

Tue, 20 Nov 2018
12:00
C4

Epidemic processes in multilayer networks

Francisco Aparecido Rodrigues
(University of São Paulo)
Abstract

Disease transmission and rumour spreading are ubiquitous in social and technological networks. In this talk, we will present our last results on the modelling of rumour and disease spreading in multilayer networks.  We will derive analytical expressions for the epidemic threshold of the susceptible-infected-susceptible (SIS) and susceptible-infected-recovered dynamics, as well as upper and lower bounds for the disease prevalence in the steady state for the SIS scenario. Using the quasistationary state method, we numerically show the existence of disease localization and the emergence of two or more susceptibility peaks in a multiplex network. Moreover, we will introduce a model of epidemic spreading with awareness, where the disease and information are propagated in different layers with different time scales. We will show that the time scale determines whether the information awareness is beneficial or not to the disease spreading. 

Mon, 19 Nov 2018

17:00 - 18:00
L4

Higher Regularity of the p-Poisson Equation in the Plane

Lars Diening
(Bielefeld University)
Abstract

In recent years it has been discovered that also non-linear, degenerate equations like the $p$-Poisson equation $$ -\mathrm{div}(A(\nabla u))= - \mathrm{div} (|\nabla u|^{{p-2}}\nabla u)= -{\rm div} F$$ allow for optimal regularity. This equation has similarities to the one of power-law fluids. In particular, the non-linear mapping $F \mapsto A(\nabla u)$ satisfies surprisingly the linear, optimal estimate $\|A(\nabla u)\|_X \le c\, \|F\|_X$ for several choices of spaces $X$. In particular, this estimate holds for Lebesgue spaces $L^q$ (with $q \geq p'$), spaces of bounded mean oscillations and Holder spaces$C^{0,\alpha}$ (for some $\alpha>0$).

In this talk we show that we can extend this theory to Sobolev and Besov spaces of (almost) one derivative. Our result are restricted to the case of the plane, since we use complex analysis in our proof. Moreover, we are restricted to the super-linear case $p \geq 2$, since the result fails $p < 2$. Joint work with Anna Kh. Balci, Markus Weimar.

Mon, 19 Nov 2018

16:00 - 17:00
L4

Stationary black holes with negative cosmological constant

Piotr T. Chrusciel
(University of Vienna)
Abstract

I will present a construction of large families of singularity-free stationary solutions of Einstein equations, for a large class of matter models including vacuum, with a negative cosmological constant. The solutions, which are of course real-valued Lorentzian metrics, are determined by a set of free data at conformal infinity, and the construction proceeds through elliptic equations for complex-valued tensor fields. One thus obtains infinite dimensional families of both strictly stationary spacetimes and black hole spacetimes.

Mon, 19 Nov 2018
15:45
L6

Random triangular Burnside groups

John Mackay
(University of Bristol)
Abstract

In this talk I will discuss recent joint work with Dominik Gruber where 
we find a reasonable model for random (infinite) Burnside groups, 
building on earlier tools developed by Coulon and Coulon-Gruber.

The free Burnside group with rank r and exponent n is defined to be the 
quotient of a free group of rank r by the normal subgroup generated by 
all elements of the form g^n; quotients of such groups are called 
Burnside groups.  In 1902, Burnside asked whether any such groups could 
be infinite, but it wasn't until the 1960s that Novikov and Adian showed 
that indeed this was the case for all large enough odd n, with later 
important developments by Ol'shanski, Ivanov, Lysenok and others.

In a different direction, when Gromov developed the theory of hyperbolic 
groups in the 1980s and 90s, he observed that random quotients of free 
groups have interesting properties: depending on exactly how one chooses 
the number and length of relations one can typically gets hyperbolic 
groups, and these groups are infinite as long as not too many relations 
are chosen, and exhibit other interesting behaviour.  But one could 
equally well consider what happens if one takes random quotients of 
other free objects, such as free Burnside groups, and that is what we 
will discuss.
 

Mon, 19 Nov 2018

15:45 - 16:45
L3

Fast-slow systems driven by slowly mixing deterministic dynamics.

ALEXEY KOREPANOV
(University of Warwick)
Abstract

I will talk about R^n valued random processes driven by a "noise", which is generated by a deterministic dynamical system, randomness coming from the choice of the initial condition.

Such processes were considered by D.Kelly and I.Melbourne.I will present our joint work with I.Chevyrev, P.Friz, I.Melbourne and H.Zhang, where we consider the noise with long term memory. We prove convergence to solution of a stochastic differential equation which is, depending on the noise, driven by either a Brownian motion (optimizing the assumptions of Kelly-Melbourne) or a Lévy process.Our work is made possible by recent progress in rough path theory for càdlàg paths in p-variation topology.

 

Mon, 19 Nov 2018

14:15 - 15:15
L4

Zed-hat

Sergei Gukov
(Caltech)
Abstract

The goal of the talk will be to introduce a class of functions that answer a question in topology, can be computed via analytic methods more common in the theory of dynamical systems, and in the end turn out to enjoy beautiful modular properties of the type first observed by Ramanujan. If time permits, we will discuss connections with vertex algebras and physics of BPS states which play an important role, but will be hidden "under the hood" in much of the talk.

 

Mon, 19 Nov 2018

14:15 - 15:15
L3

Hedging derivatives under market frictions using deep learning techniques

LUKAS GONON
((ETH) Zurich)
Abstract

We consider the problem of optimally hedging a portfolio of derivatives in a scenario based discrete-time market with transaction costs. Risk-preferences are specified in terms of a convex risk-measure. Such a framework has suffered from numerical intractability up until recently, but this has changed thanks to technological advances: using hedging strategies built from neural networks and machine learning optimization techniques, optimal hedging strategies can be approximated efficiently, as shown by the numerical study and some theoretical results presented in this talk (based on joint work with Hans Bühler, Ben Wood and Josef Teichmann).

Mon, 19 Nov 2018
12:45
L3

Tinkertoys for E₈ (and related matters)

Jacques Distler
(UT Austin)
Abstract

I will review some recent progress on D=4, N=2 superconformal field theories in what has come to be known as "Class-S". This is a huge class of (mostly non-Lagrangian) SCFTs, whose properties are encoded in the data of a punctured Riemann surface and a collection (one per puncture) of nilpotent orbits in an ADE Lie algebra.

Fri, 16 Nov 2018
16:00
L1

3 minute thesis competition

Judges: Helen Byrne, Jon Chapman, Patrick Farrell and Christina Goldschmidt
Abstract

How much do you know actually about the research that is going on across the department? The SIAM Student Chapter brings you a 3 minute thesis competition challenging a group of DPhil students to go head to head to explain their research in just 3 minutes with the aid of a single slide. This is the perfect opportunity to hear about a wide range of topics within applied mathematics, and to gain insight into the impact that mathematical research can have. The winner will be decided by a judging panel comprising Professors Helen Byrne, Jon Chapman, Patrick Farrell, and Christina Goldschmidt.
 

Fri, 16 Nov 2018

15:00 - 16:00
L1

Total positivity: a concept at the interface between algebra, analysis and combinatorics

Alan Sokal
(UCL & NYU)
Abstract

A matrix M of real numbers is called totally positive if every minor of M is nonnegative. This somewhat bizarre concept from linear algebra has surprising connections with analysis - notably polynomials and entire functions with real zeros, and the classical moment problem and continued fractions - as well as combinatorics. I will explain briefly some of these connections, and then introduce a generalization: a matrix M of polynomials (in some set of indeterminates) will be called coefficientwise totally positive if every minor of M is a polynomial with nonnegative coefficients. Also, a sequence (an)n≥0  of real numbers (or polynomials) will be called (coefficientwise) Hankel-totally positive if the Hankel matrix H = (ai+j)i,j ≥= 0 associated to (an) is (coefficientwise) totally positive. It turns out that many sequences of polynomials arising in enumerative combinatorics are (empirically) coefficientwise Hankel-totally positive; in some cases this can be proven using continued fractions, while in other cases it remains a conjecture.

Fri, 16 Nov 2018

14:00 - 15:00
C2

Confined Rayleigh Taylor instabilities and other mushy magma problems

Alison Rust
(University of Bristol)
Abstract

The magma chamber - an underground vat of fluid magma that is tapped during volcanic eruptions - has been the foundation of models of volcanic eruptions for many decades and successfully explains many geological observations.  However, geophysics has failed to image the postulated large magma chambers, and the chemistry and ages of crystals in erupted magmas indicate a more complicated history.  New conceptual models depict subsurface magmatic systems as dominantly uneruptible crystalline networks with interstitial melt (mushes) extending deep into the Earth's crust to the mantle, containing lenses of potentially eruptible (low-crystallinity) magma.  These lenses would commonly be less dense than the overlying mush and so Rayleigh Taylor instabilities should develop leading to ascent of blobs of magma unless the growth rate is sufficiently slow that other processes (e.g. solidification) dominate.  The viscosity contrast between a buoyant layer and mush is typically extremely large; a consequence is that the horizontal dimension of a magma reservoir is commonly much less than the theoretical fastest growing wavelength assuming an infinite horizontal layer.  

 

I will present laboratory experiments and linear stability analysis for low Reynolds number, laterally confined Rayleigh Taylor instabilities involving one layer that is much thinner and much less viscous than the other.  I will then apply the results to magmatic systems, comparing timescales for development of the instability and the volumes of packets of rising melt generated, with the frequencies and sizes of volcanic eruptions.  I will then discuss limitations of this work and outstanding fluid dynamical problems in this new paradigm of trans-crustal magma mush systems.

Fri, 16 Nov 2018

14:00 - 15:00
L1

Mathematics: the past, present and future - "The Goldbach Conjecture"

Prof Ben Green
Abstract

The Goldbach conjecture is a famous unsolved problem in mathematics. It asks whether every even number greater than or equal to 4 is the sum of two primes. I will discuss some of the history of the problem, explaining among other things why the answer is surely yes, and also why this appears to be very hard to prove.

 
Fri, 16 Nov 2018

14:00 - 15:00
L3

In-silico modelling of the tumour microenvironment

Professor Francesca Buffa
(Department of Oncology University of Oxford)
Abstract

Despite progress in understanding many aspects of malignancy, resistance to therapy is still a frequent occurrence. Recognised causes of this resistance include 1) intra-tumour heterogeneity resulting in selection of resistant clones, 2) redundancy and adaptability of gene signalling networks, and 3) a dynamic and protective microenvironment. I will discuss how these aspects influence each other, and then focus on the tumour microenvironment.

The tumour microenvironment comprises a heterogeneous, dynamic and highly interactive system of cancer and stromal cells. One of the key physiological and micro-environmental differences between tumour and normal tissues is the presence of hypoxia, which not only alters cell metabolism but also affects DNA damage repair and induces genomic instability. Moreover, emerging evidence is uncovering the potential role of multiple stroma cell types in protecting the tumour primary niche.

I will discuss our work on in silico cancer models, which is using genomic data from large clinical cohorts of individuals to provide new insights into the role of the tumour microenvironment in cancer progression and response to treatment. I will then discuss how this information can help to improve patient stratification and develop novel therapeutic strategies.

Fri, 16 Nov 2018

12:00 - 13:00
L5

Some Problems On Harmonic Maps from $\mathbb{B}^3$ to $\mathbb{S}^2$

Siran Li
(Rice University)
Abstract

Harmonic map equations are an elliptic PDE system arising from the  
minimisation problem of Dirichlet energies between two manifolds. In  
this talk we present some some recent works concerning the symmetry  
and stability of harmonic maps. We construct a new family of  
''twisting'' examples of harmonic maps and discuss the existence,  
uniqueness and regularity issues. In particular, we characterise of  
singularities of minimising general axially symmetric harmonic maps,  
and construct non-minimising general axially symmetric harmonic maps  
with arbitrary 0- or 1-dimensional singular sets on the symmetry axis.  
Moreover, we prove the stability of harmonic maps from $\mathbb{B}^3$  
to $\mathbb{S}^2$ under $W^{1,p}$-perturbations of boundary data, for  
$p \geq 2$. The stability fails for $p <2$ due to Almgren--Lieb and  
Mazowiecka--Strzelecki.

(Joint work with Prof. Robert M. Hardt.)

Fri, 16 Nov 2018

12:00 - 13:00
L4

Topological adventures in neuroscience

Kathryn Hess
(École Polytechnique Fédérale de Lausanne (EPFL))
Abstract

Over the past decade, and particularly over the past five years, research at the interface of topology and neuroscience has grown remarkably fast.  In this talk I will briefly survey a few quite different applications of topology to neuroscience in which members of my lab have been involved over the past four years: the algebraic topology of brain structure and function, topological characterization and classification of neuron morphologies, and (if time allows) topological detection of network dynamics.

Fri, 16 Nov 2018 08:30 -
Sat, 17 Nov 2018 17:00

11th Oxford Princeton Workshop on Financial Mathematics and Stochastic Analysis

Abstract

The Oxford-Princeton Workshops on Financial Mathematics & Stochastic Analysis have been held approximately every eighteen months since 2002, alternately in Princeton and Oxford. They bring together leading groups of researchers in, primarily, mathematical and computational finance from Oxford University and Princeton University to collaborate and interact. The series is organized by the Oxford Mathematical and Computational Finance Group, and at Princeton by the Department of Operations Research and Financial Engineering and the Bendheim Center for Finance.

 

Thu, 15 Nov 2018

17:15 - 18:15
L1

Michael Berry - Chasing the dragon: tidal bores in the UK and elsewhere

Michael Berry
(University of Bristol)
Abstract

Oxford Mathematics Public Lectures
Hooke Lecture

Michael Berry - Chasing the dragon: tidal bores in the UK and elsewhere
15 November 2018 - 5.15pm

In some of the world’s rivers, an incoming high tide can arrive as a smooth jump decorated by undulations, or as a breaking wave. The river reverses direction and flows upstream.

Understanding tidal bores involves

· analogies with tsunamis, rainbows, horizons in relativity, and ideas from  quantum physics;

· the concept of a ‘minimal model’ in mathematical explanation;

· different ways in which different cultures describe the same thing;

· the first unification in fundamental physics.

Michael Berry is Emeritus Professor of Physics, H H Wills Physics Laboratory, University of Bristol

5.15pm, Mathematical Institute, Oxford

Please email @email to register.

Watch live:

https://www.facebook.com/OxfordMathematics
https://livestream.com/oxuni/Berry

Oxford Mathematics Public Lectures are generously supported by XTX Markets.

 

 

 

Thu, 15 Nov 2018

16:00 - 17:00
L6

Potential automorphy over CM fields and the Ramanujan conjecture

Ana Caraiani
(Imperial College)
Abstract

I will give an overview of some recent progress on potential automorphy results over CM fields, that is joint work with Allen, Calegari, Gee, Helm, Le Hung, Newton, Scholze, Taylor, and Thorne. I will focus on explaining an application to the generalized Ramanujan-Petersson conjecture. 

Thu, 15 Nov 2018
16:00
C5

An introduction to Heegaard Floer homology

Antonio Alfieri
(CEU)
Abstract

Lagrangian Floer homology has been used by Ozsvath and Szabo to define a package of three-manifold invariants known as Heegaard Floer homology. I will give an introduction to the topic.