Mon, 19 Oct 2015

16:00 - 17:00
C2

Algebraic Automorphic Forms and the Langlands Program

Benjamin Green
(Oxford)
Abstract

In this talk I will define algebraic automorphic forms, first defined by Gross, which are objects that are conjectured to have Galois representations attached to them. I will explain how this fits into the general picture of the Langlands program and, giving some examples, briefly describe one method of proving certain cases of the conjecture. 

Mon, 19 Oct 2015

16:00 - 17:00
L5

The tangential touch problem for fully nonlinear elliptic operators

Emanuel Indrei
(Carnegie Mellon Univeristy)
Abstract
The tangential touch problem in elliptic theory consists of exposing the dynamics of the free boundary near the fixed boundary in obstacle problems. The solution of this problem is discussed for fully nonlinear elliptic operators in two dimensions.
Based on joint work with Andreas Minne.
Mon, 19 Oct 2015
15:45
L6

On the combinatorics of the two-dimensional Ising model

David Cimasoni
(University of Geneva)
Abstract

In the first part of this talk, we will give a very gentle introduction to the Ising model. Then , we will explain a very simple proof of a combinatorial formula for the 2D Ising model partition function using the language of Kac-Ward matrices. This approach can be used for general weighted graphs embedded in surfaces, and extends to the study of several other observables. This is a joint work with Dima Chelkak and Adrien Kassel.
 

Mon, 19 Oct 2015

14:15 - 15:15
Oxford-Man Institute

The microstructural foundations of rough volatility models

MATHIEU ROSENBAUM
(Paris Polytechnique)
Abstract

Abstract: It has been recently shown that rough volatility models reproduce very well the statistical properties of low frequency financial data. In such models, the volatility process is driven by a fractional Brownian motion with Hurst parameter of order 0.1. The goal of this talk is to explain how such fractional dynamics can be obtained from the behaviour of market participants at the microstructural scales.

Using limit theorems for Hawkes processes, we show that a rough volatility naturally arises in the presence of high frequency trading combined with metaorders splitting. This is joint work with Thibault Jaisson.

Mon, 19 Oct 2015

12:00 - 13:00
L5

From special geometry to Nernst branes

Thomas Mohaupt
(Liverpool)
Abstract
Dimensional reduction over time is a useful method for constructing stationary solutions in supergravity, both extremal and non-extremal. For theories with N=2 vector multiplets one can in addition exploit the special Kahler geometry encoding the couplings. I will explain why aformulation in terms of real coordinates and a Hesse potential is useful, and how special Kahler geometry is related to
para-quaternionic Kahler geometry by dimensional reduction. As an application I will present the construction of black brane solutions with vanishing entropy density at zero temperature (`Nernst branes') in FI-gauged N=2 supergravity in four and five dimensions.
 
 
Fri, 16 Oct 2015
14:15
C3

Turbulence in shear flows with and without surface waves

Greg Chini
(University of New Hampshire)
Abstract

Surface waves modify the fluid dynamics of the upper ocean not only through wave breaking but also through phase-averaged effects involving the surface-wave Stokes drift velocity. Chief among these rectified effects is the generation of a convective flow known as Langmuir circulation (or “Langmuir turbulence”). Like stress-driven turbulence in the absence of surface waves, Langmuir turbulence is characterized by streamwise-oriented quasi-coherent roll vortices and streamwise streaks associated with spanwise variations in the streamwise flow. To elucidate the fundamental differences between wave-free (shear) and wave-catalyzed (Langmuir) turbulence, two separate asymptotic theories are developed in parallel. First, a large Reynolds number analysis of the Navier–Stokes equations that describes a self-sustaining process (SSP) operative in linearly stable wall-bounded shear flows is recounted. This theory is contrasted with that emerging from an asymptotic reduction in the strong wave-forcing limit of the Craik–Leibovich (CL) equations governing Langmuir turbulence. The comparative analysis reveals important structural and dynamical differences between the SSPs in shear flows with and without surface waves and lends further support to the view that Langmuir turbulence in the upper ocean is a distinct turbulence regime. 

Fri, 16 Oct 2015

14:00 - 15:00
L3

What’s lumen got to do with it? Mechanics and transport in lung morphogenesis

Dr Sharon Lubkin
(Dept of Maths UCSU)
Abstract

Mammalian lung morphology is well optimized for efficient bulk transport of gases, yet most lung morphogenesis occurs prenatally, when the lung is filled with liquid - and at birth it is immediately ready to function when filled with gas. Lung morphogenesis is regulated by numerous mechanical inputs including fluid secretion, fetal breathing movements, and peristalsis. We generally understand which of these broad mechanisms apply, and whether they increase or decrease overall size and/or branching. However, we do not generally have a clear understanding of the intermediate mechanisms actuating the morphogenetic control. We have studied this aspect of lung morphogenesis from several angles using mathematical/mechanical/transport models tailored to specific questions. How does lumen pressure interact with different locations and tissues in the lung? Is static pressure equivalent to dynamic pressure? Of the many plausible cellular mechanisms of mechanosensing in the prenatal lung, which are compatible with the actual mechanical situation? We will present our models and results which suggest that some hypothesized intermediate mechanisms are not as plausible as they at first seem.

 

Thu, 15 Oct 2015

16:00 - 17:30
L4

Numerical approximation of irregular SDEs via Skorokhod embeddings

Stefan Ankirchner
(Friedrich-Schiller-Universität Jena)
Abstract

We provide a new algorithm for approximating the law of a one-dimensional diffusion M solving a stochastic differential equation with possibly irregular coefficients.
The algorithm is based on the construction of Markov chains whose laws can be embedded into the diffusion M with a sequence of stopping times. The algorithm does not require any regularity or growth assumption; in particular it applies to SDEs with coefficients that are nowhere continuous and that grow superlinearly. We show that if the diffusion coefficient is bounded and bounded away from 0, then our algorithm has a weak convergence rate of order 1/4. Finally, we illustrate the algorithm's performance with several examples.

Thu, 15 Oct 2015

16:00 - 17:00
L5

Sums of seven cubes

Samir Siksek
(University of Warwick)
Abstract

In 1851, Carl Jacobi made the experimental observation that all integers are sums of seven non-negative cubes, with precisely 17 exceptions, the largest of which is 454. Building on previous work by Maillet, Landau, Dickson, Linnik, Watson, Bombieri, Ramaré, Elkies and many others, we complete the proof of Jacobi's observation.

Thu, 15 Oct 2015

16:00 - 17:00
L3

Localized Patterns & Spatial Heterogeneitie

Arjen Doelman
(Leiden University)
Abstract

We consider the impact of spatial heterogeneities on the dynamics of 
localized patterns in systems of partial differential equations (in one 
spatial dimension). We will mostly focus on the most simple possible 
heterogeneity: a small jump-like defect that appears in models in which 
some parameters change in value as the spatial variable x crosses 
through a critical value -- which can be due to natural inhomogeneities, 
as is typically the case in ecological models, or can be imposed on the 
model for engineering purposes, as in Josephson junctions. Even such a 
small, simplified heterogeneity may have a crucial impact on the 
dynamics of the PDE. We will especially consider the effect of the 
heterogeneity on the existence of defect solutions, which boils down to 
finding heteroclinic (or homoclinic) orbits in an n-dimensional 
dynamical system in `time' x, for which the vector field for x > 0 
differs slightly from that for x < 0 (under the assumption that there is 
such an orbit in the homogeneous problem). Both the dimension of the 
problem and the nature of the linearized system near the limit points 
have a remarkably rich impact on the defect solutions. We complement the 
general approach by considering two explicit examples: a heterogeneous 
extended Fisher–Kolmogorov equation (n = 4) and a heterogeneous 
generalized FitzHugh–Nagumo system (n = 6).

Thu, 15 Oct 2015

12:00 - 13:00
L6

Global Nonlinear Stability of Minkowski Space for the Massless Einstein-Vlasov System

Martin Taylor
(University of Cambridge)
Abstract
Given an initial data set for the vacuum Einstein equations which is suitably close to that of Minkowski space, the monumental work of Christodoulou—Klainerman guarantees the corresponding solution exists globally and asymptotically approaches the Minkowski solution.  The aim of the talk is to put this theorem in context, emphasising the importance of the null condition, before briefly discussing a new result on the corresponding problem in the presence of massless matter described by the Vlasov equation.
Wed, 14 Oct 2015

17:00 - 18:30
L1

M C Escher - Artist, Mathematician, Man

Roger Penrose and Jon Chapman
(Oxford)
Abstract

Oxford Mathematics Public Lectures

MC Escher - Artist, Mathematician, Man 

Roger Penrose and Jon Chapman

This lecture has now sold out

The symbiosis between mathematics and art is personified by the relationship between Roger Penrose and the great Dutch graphic artist MC Escher. In this lecture Roger will give a personal perspective on Escher's work and his own relationship with the artist while Jon Chapman will demonstrate the mathematical imagination inherent in the work. 

The lecture will be preceded by a showing of the BBC 4 documentary on Escher presented by Sir Roger Penrose. Private Escher prints and artefacts will be on display outside the lecture theatre.

5pm

Lecture Theatre 1

Mathematical Institute

Andrew Wiles Building

Radcliffe Observatory Quarter

Woodstock Road

OX2 6GG

 

Roger Penrose is Emeritus Rouse Ball Professor at the Mathematical Institute in Oxford

 

Jon Chapman is Statutory Professor of Mathematics and Its Applications at the Mathematical Institute in Oxford

Wed, 14 Oct 2015
16:00
C2

tba

Robin Knight
(Oxford)
Wed, 14 Oct 2015
15:00
L4

The impact of quantum computing on cryptography

Steve Brierley
(University of Cambridge)
Abstract

This is an exciting time to study quantum algorithms. As the technological challenges of building a quantum computer continue to be met there is still much to learn about the power of quantum computing. Understanding which problems a quantum computer could solve faster than a classical device and which problems remain hard is particularly relevant to cryptography. We would like to design schemes that are secure against an adversary with a quantum computer. I'll give an overview of the quantum computing that is accessible to a general audience and use a recently declassified project called "soliloquy" as a case study for the development (and breaking) of post-quantum cryptography.

Wed, 14 Oct 2015

11:00 - 12:30
N3.12

Properties of random groups.

Rob Kropholler
(Oxford)
Abstract

Many people talk about properties that you would expect of a group. When they say this they are considering random groups, I will define what it means to pick a random group in one of many models and will give some properties that these groups will have with overwhelming probability. I will look at the proof of some of these results although the talk will mainly avoid proving things rigorously.

Wed, 14 Oct 2015

10:00 - 11:00
L4

Center of quiver Hecke algebras and cohomology of quiver varieties

Prof. Peng Shan
Abstract

I will explain how to relate the center of a cyclotomic quiver Hecke algebras to the cohomology of Nakajima quiver varieties using a current algebra action. This is a joint work with M. Varagnolo and E. Vasserot.
 

Tue, 13 Oct 2015
17:00
Taught Course Centre

Haagerup approximation property for arbitrary von Neumann algebras and Schoenberg correspondence

Adam Skalski
(Polish Academy of Sciences)
Abstract

This talk will be by videolink from Warsaw.  The starting-time will be a little after 17:00 due to a TCC lecture and time needed to establish video connections.

 

Abstract: The Haagerup approximation property for finite von Neumann algebras  (i.e.von Neumann algebras with a tracial faithful normal state) has been studied for more than 30 years. The original motivation to study this property came from the case of group von Neumann algebras of discrete groups, where it corresponds to the geometric Haagerup property of the underlying group. Last few years brought a lot of interest in the Haagerup property for discrete and general locally compact quantum groups. If the discrete quantum group in question is not unimodular, the associated (quantum) group von Neumann algebra cannot be finite, so we need a broader framework for the operator algebraic property. In this talk, I will present recent developments regarding the Haagerup approximation property for arbitrary von Neumann algebras and will also discuss some questions relating it to the issues related to the classical Schoenberg correspondence. (Mainly based on joint work with Martijn Caspers.)

Tue, 13 Oct 2015
16:30
L6

Unconditional hardness results and a tricky coin weighing puzzle

Raphaël Clifford
(University of Bristol)
Abstract

It has become possible in recent years to provide unconditional lower bounds on the time needed to perform a number of basic computational operations. I will briefly discuss some of the main techniques involved and show how one in particular, the information transfer method, can be exploited to give  time lower bounds for computation on streaming data.

I will then go on to present a simple looking mathematical conjecture with a probabilistic combinatorics flavour that derives from this work.  The conjecture is related to the classic "coin weighing with a spring scale" puzzle but has so far resisted our best efforts at resolution.

Tue, 13 Oct 2015

15:45 - 16:45
L4

D-modules from the b-function and Hamiltonian flow

Travis Schedler
(Imperial College London)
Abstract

Given a hypersurface, the Bernstein-Sato polynomial gives deep information about its singularities.  It is defined by a D-module (the algebraic formalism of differential equations) closely related to analytic continuation of the gamma function. On the other hand, given a hypersurface (in a Calabi-Yau variety) one can also consider the Hamiltonian flow by divergence-free vector fields, which also defines a D-module considered by Etingof and myself. I will explain how, in the case of quasihomogeneous hypersurfaces with isolated singularities, the two actually coincide. As a consequence I affirmatively answer a folklore question (to which M. Saito recently found a counterexample in the non-quasihomogeneous case): if c$ is a root of the b-function, is the D-module D f^c / D f^{c+1} nonzero? We also compute this D-module, and for c=-1 its length is one more than the genus (conjecturally in the non-quasihomogenous case), matching an analogous D-module in characteristic p. This is joint work with Bitoun.
 

Tue, 13 Oct 2015
14:30
L6

Rainbow Connectivity

Nina Kamčev
(ETH Zurich)
Abstract

An edge (vertex) coloured graph is rainbow-connected if there is a rainbow path between any two vertices, i.e. a path all of whose edges (internal vertices) carry distinct colours. Rainbow edge (vertex) connectivity of a graph G is the smallest number of colours needed for a rainbow edge (vertex) colouring of G. We propose a very simple approach to studying rainbow connectivity in graphs. Using this idea, we give a unified proof of several new and known results, focusing on random regular graphs. This is joint work with Michael Krivelevich and Benny Sudakov.