Mon, 14 Jan 2019

14:15 - 15:15
L4

Instability of some (positive) Einstein metrics under the Ricci flow

Stuart Hall
(Newcastle University)
Abstract

Einstein metrics are fixed points (up to scaling) of Hamilton's Ricci flow. A natural question to ask is whether a given metric is stable in the sense that the flow returns to the Einstein metric under a small perturbation. I'll give a brief survey of this area focussing on the case when the Einstein constant is positive. An interesting class of metrics where this question is not completely resolved are the compact symmetric spaces. I'll report on some recent progress with Tommy Murphy and James Waldron where we have been able to use a criterion due to Kroencke to show the Kaehler-Einstein metric on some Grassmannians and the bi-invariant metric on the Lie group G_2 are unstable.

 

Mon, 14 Jan 2019

13:00 - 13:30
N3.12

Mathematrix - Welcome to Hilary Term

Abstract

Get to know the Mathematrix events of this term!

We were a bit too late with ordering food, so the usual sandwich lunch will only start from week 2. However, there may be some small snacks.

Mon, 14 Jan 2019
12:45
L3

Periods, zeta-functions and attractor varieties

Philip Candelas
(Oxford)
Abstract

The zeta-function of a manifold varies with the parameters and may be evaluated in terms of the periods. For a one parameter family of CY manifolds, the periods satisfy a single 4th order differential equation. Thus there is a straight and, it turns out, readily computable path that leads from a differential operator to a zeta-function. Especially interesting are the specialisations to singular manifolds, for which the zeta-function manifests modular behaviour. We are also able to find, from the zeta function, attractor points. These correspond to special values of the parameter for which there exists a 10D spacetime for which the 6D corresponds to a CY manifold and the 4D spacetime corresponds to an extremal supersymmetric black hole. These attractor CY manifolds are believed to have special number theoretic properties. This is joint work with Xenia de la Ossa, Mohamed Elmi and Duco van Straten.

Fri, 11 Jan 2019

09:30 - 17:00
L3

SIAM UKIE Annual Meeting 2019

Various
(University of Cambridge and others)
Abstract

The 23rd Annual Meeting of the SIAM UKIE Section will take place on Friday 11th January 2019 at the Mathematical Institute at the University of Oxford.

The meeting will feature five invited speakers covering a broad range of industrial and applied mathematics: 

- Lisa Fauci, Tulane University, Incoming SIAM President
- Des Higham, Strathclyde University 
- Carola-Bibiane Schoenlieb (IMA sponsored speaker), University of Cambridge 
- Kirk Soodhalter, Trinity College Dublin 
- Konstantinos Zygalakis, University of Edinburgh 

There will also be a poster session, open to PhD students and postdocs. Travel support will be available for PhD students with an accepted poster presentation, and Best Poster prizes will be awarded. 

All talks will take place in room L3 in the Andrew Wiles Building (Mathematical Institute, University of Oxford). 

Programme 
09:30 - 10:00 Registration, tea/coffee 
10:00 - 10:15 Welcome 
10:15 - 11:00 Des Higham: Our Friends are Cooler than Us 
11:00 - 11:45 Lisa Fauci: Complex dynamics of fibers in flow at the microscale 
11:45 - 12:15 Poster Blitz 
12:15 - 13:30 Lunch and Poster session 
13:30 - 14:00 SIAM UKIE Business Meeting, open to all 
14:00 - 14:45 Kirk Soodhalter: Augmented Arnoldi-Tikhonov Methods for Ill-posed Problems 
14:45 - 15:30 Konstantinos Zygalakis: Explicit stabilised Runge-Kutta methods and their application to Bayesian inverse problems 
15:30 - 16:00 Tea/coffee 
16:00 - 16:45 Carola-Bibiane Schoenlieb (IMA sponsored speaker): Variational models and partial differential equations for mathematical imaging 
16:45 - 17:00 Poster prize announcement

Wed, 09 Jan 2019

17:00 - 18:15

Inaugural Oxford Mathematics Midlands Public Lecture (in Solihull): Marcus du Sautoy -The Num8er My5teries

Marcus du Sautoy
(University of Oxford)
Abstract

With topics ranging from prime numbers to the lottery, from lemmings to bending balls like Beckham, Professor Marcus du Sautoy will provide an entertaining and, perhaps, unexpected approach to explain how mathematics can be used to predict the future. 

We are delighted to announce our first Oxford Mathematics Midlands Public Lecture to take place at Solihull School on 9th January 2019. 

Please email @email to register

Watch live:
https://facebook.com/OxfordMathematics
https://livestream.com/oxuni/du-Sautoy

We are very grateful to Solihull School for hosting this lecture.

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

 

Sat, 05 Jan 2019
16:15

TBA

Rahul Santhanam
(Oxford)
Fri, 21 Dec 2018

15:45 - 16:45
C1

tba

Fri, 14 Dec 2018

11:45 - 13:15
L3

InFoMM CDT Group Meeting

Clint Wong, Ian Roper, Melanie Beckerleg, Raquel González Fariña
(Mathematical Institute)
Wed, 12 Dec 2018

17:00 - 18:00
L1

Hannah Fry - Hello World

Hannah Fry - University College of London
(UCL)
Abstract

Hannah Fry takes us on a tour of the good, the bad and the downright ugly of the algorithms that surround us. Are they really an improvement on the humans they are replacing?

Hannah Fry is a lecturer in the Mathematics of Cities at the Centre for Advanced Spatial Analysis at UCL. She is also a well-respected broadcaster and the author of several books including the recently published 'Hello World: How to be Human in the Age of the Machine.'

5.00pm-6.00pm, Mathematical Institute, Oxford

Please email @email to register

Watch live:
https://facebook.com/OxfordMathematics
https://livestream.com/oxuni/ChristmasLecture2018

The Oxford Mathematics Public Lectures are generously supported by XTX Markets

Thu, 06 Dec 2018

12:00 - 13:00

Jonathan Chetwynd-Diggle (Probability Session)

Jonathan Chetwynd-Diggle
(University of Oxford)
Abstract

An informal session for DPhil students, ECRs and undergraduates with an interest in probability. The aim is to gain exposure to areas outside of your own research interests in an informal and accessible way.

Tue, 04 Dec 2018

16:00 - 17:30
L4

Quantifying Ambiguity Bounds Through Hypothetical Statistical Testing

Anne Balter
Abstract

Authors:

Anne Balter and Antoon Pelsser

Models can be wrong and recognising their limitations is important in financial and economic decision making under uncertainty. Robust strategies, which are least sensitive to perturbations of the underlying model, take uncertainty into account. Interpreting

the explicit set of alternative models surrounding the baseline model has been difficult so far. We specify alternative models by a stochastic change of probability measure and derive a quantitative bound on the uncertainty set. We find an explicit ex ante relation

between the choice parameter k, which is the radius of the uncertainty set, and the Type I and II error probabilities on the statistical test that is hypothetically performed to investigate whether the model specification could be rejected at the future test horizon.

The hypothetical test is constructed to obtain all alternative models that cannot be distinguished from the baseline model with sufficient power. Moreover, we also link the ambiguity bound, which is now a function of interpretable variables, to numerical

values on several divergence measures. Finally, we illustrate the methodology on a robust investment problem and identify how the robustness multiplier can be numerically interpreted by ascribing meaning to the amount of ambiguity.

Tue, 04 Dec 2018

14:00 - 15:00
L6

The Oberwolfach Research Institute for Mathematics, 1944-1963

Volker Remmert
(Bergische Universitat Wuppertal)
Abstract

The Oberwolfach Research Institute for Mathematics (Mathematisches Forschungsinstitut Oberwolfach/MFO) was founded in late 1944 by the Freiburg mathematician Wilhelm Süss (1895-1958) as the „National Institute for Mathematics“. In the 1950s and 1960s the MFO developed into an increasingly international conference centre.

The aim of my project is to analyse the history of the MFO as it institutionally changed from the National Institute for Mathematics with a wide, but standard range of responsibilities, to an international social infrastructure for research completely new in the framework of German academia. The project focusses on the evolvement of the institutional identity of the MFO between 1944 and the early 1960s, namely the development and importance of the MFO’s scientific programme (workshops, team work, Bourbaki) and the instruments of research employed (library, workshops) as well as the corresponding strategies to safeguard the MFO’s existence (for instance under the wings of the Max-Planck-Society). In particular, three aspects are key to the project, namely the analyses of the historical processes of (1) the development and shaping of the MFO’s workshop activities, (2) the (complex) institutional safeguarding of the MFO, and (3) the role the MFO played for the re-internationalisation of mathematics in Germany. Thus the project opens a window on topics of more general relevance in the history of science such as the complexity of science funding and the re-internationalisation of the sciences in the early years of the Federal Republic of Germany.

Tue, 04 Dec 2018

12:00 - 13:00
C4

Pairwise Approximations of Non-markovian Network Epidemics

Gergely Röst
(University of Oxford)
Abstract

Joint work with Zsolt Vizi (Bolyai Institute, University of Szeged, Hungary), Istvan Kiss (Department
of Mathematics, University of Sussex, United Kingdom)

Pairwise models have been proven to be a flexible framework for analytical approximations
of stochastic epidemic processes on networks that are in many situations much more accurate
than mean field compartmental models. The non-Markovian aspects of disease transmission
are undoubtedly important, but very challenging to incorporate them into both numerical
stochastic simulations and analytical investigations. Here we present a generalization of
pairwise models to non-Markovian epidemics on networks. For the case of infectious periods
of fixed length, the resulting pairwise model is a system of delay differential equations, which
shows excellent agreement with results based on the explicit stochastic simulations. For more
general distribution classes (uniform, gamma, lognormal etc.) the resulting models are PDEs
that can be transformed into systems of integro-differential equations. We derive pairwise
reproduction numbers and relations for the final epidemic size, and initiate a systematic
study of the impact of the shape of the particular distributions of recovery times on how
the time evolution of the disease dynamics play out.

Mon, 03 Dec 2018

16:00 - 17:00
L6

Uniqueness and stability for shock reflection problem

Mikhail Feldman
(University of Wisconsin)
Abstract

We discuss shock reflection problem for compressible gas dynamics, von Neumann conjectures on transition between regular and Mach reflections, and existence of regular reflection solutions for potential flow equation. Then we will talk about recent results on uniqueness and stability of regular reflection solutions for potential flow equation in a natural class of self-similar solutions. The approach is to reduce the shock reflection problem to a free boundary problem for a nonlinear elliptic equation, and prove uniqueness by a version of method of continuity. A property of solutions important for the proof of uniqueness is convexity of the free boundary. 

This talk is based on joint works with G.-Q. Chen and W. Xiang.

Mon, 03 Dec 2018
16:00
L3

General lessons on 4d SCFTs from Geometry

Mario Martone
(UT Austin)
Abstract

The geometry of the moduli space of 4d  N=2  moduli spaces, and in particular of their Coulomb branches (CBs), is very constrained. In this talk I will show that through its careful study, we can learn general and somewhat surprising lessons about the properties of N=2  super conformal field theories (SCFTs). Specifically I will show that we can prove that the scaling dimension of CB coordinates, and thus of the corresponding operator at the SCFT fixed point, has to be rational and it has a rank-dependent maximum value and that in general the moduli spaces of N=2 SCFTs can have metric singularities as well as complex structure singularities. 

Finally I will outline how we can explicitly perform a classification of geometries of N>=3 SCFTs and carry out the program up to rank-2. The results are surprising and exciting in many ways.

Mon, 03 Dec 2018
12:00
L6

Two-loop amplitudes from the Riemann Sphere

Dr Yvonne Geyer
(IAS Princeton)
Abstract


Massless Quantum Field Theories can be described perturbatively by chiral worldsheet models - the so-called Ambitwistor Strings. In contrast to conventional string theory, where loop amplitudes are calculated from higher genus Riemann surfaces, loop amplitudes in the ambitwistor string localise on the non-separating boundary of the moduli space. I will describe the resulting framework for QFT amplitudes from (nodal) Riemann spheres, building up from tree-level to two-loop amplitudes.
 

Fri, 30 Nov 2018
16:00
L1

North meets South colloquium

Jan Vonk and Robert Timms
Abstract

Robert Timms

Title: Multiscale modelling of lithium-ion batteries

Lithium-ion batteries are one of the most widely used technologies for energy storage, with applications ranging from portable electronics to electric vehicles. Due to their popularity, there is a continued interest in the development of mathematical models of lithium-ion batteries. These models encompass various levels of complexity, which may be suitable to aid with design, or for real-time monitoring of performance. After a brief introduction to lithium-ion batteries, I will discuss some of the modelling efforts undertaken here at Oxford and within the wider battery modelling community.
 

Jan Vonk

Title: Singular moduli for real quadratic fields

At the 1900 ICM, David Hilbert posed a series of problems, of which the 12th remains completely open today. I will discuss how to solve this problem in the simplest open case, by considering certain exotic (so called p-adic) metrics on the set of numbers, and using its concomitant theories of analysis and geometry.
 

Fri, 30 Nov 2018

14:00 - 15:00
C2

The signature hidden in the deformation of a free surface

Mathieu Sellier
(University of Canterbury)
Abstract

The accurate modelling of geophysical flows often requires information which is difficult to measure and therefore poorly quantified. Such information may relate to the fluid properties or an unknown boundary condition, for example. The premise of this talk is that when the flow is bounded by a free surface, the deformation of this free surface contains useful information which can be used to infer such unknown quantities. The increasing availability of free surface data through remote sensing using drones and satellites provides the impetus to develop new mathematical methods and numerical tools to interpret the signature embedded in the free surface deformation. This talk will explore two recent examples drawn from glaciology and inspired from volcanology for which free surface data was successfully used to reconstruct an unknown field.

Fri, 30 Nov 2018

14:00 - 15:00
South Mezz Circulation

Working together: end-of-term mathematical board games

Abstract

Would you like to meet some of your fellow students, and some graduate students and postdocs, in an informal and relaxed atmosphere, while building your communication skills?  In this Friday@2 session, you'll be able to play a selection of board games, meet new people, and practise working together.  What better way to spend the final Friday afternoon of term?!  We'll play the games in the south Mezzanine area of the Andrew Wiles Building, outside L3.

Fri, 30 Nov 2018

14:00 - 15:00
L3

Minimal switches and clocks

Dr Attila Csikasz-Nagy
(Institute for Mathematical and Molecular Biomedicine King's College London)
Abstract

Switch-like and oscillatory dynamical systems are widely observed in biology. We investigate the simplest biological switch that is composed of a single molecule that can be autocatalytically converted between two opposing activity forms. We test how this simple network can keep its switching behaviour under perturbations in the system. We show that this molecule can work as a robust bistable system, even for alterations in the reactions that drive the switching between various conformations. We propose that this single molecule system could work as a primitive biological sensor and show by steady state analysis of a mathematical model of the system that it could switch between possible states for changes in environmental signals. Particularly, we show that a single molecule phosphorylation-dephosphorylation switch could work as a nucleotide or energy sensor. We also notice that a given set of reductions in the reaction network can lead to the emergence of oscillatory behaviour. We propose that evolution could have converted this switch into a single molecule oscillator, which could have been used as a primitive timekeeper. I will discuss how the structure of the simplest known circadian clock regulatory system, found in cyanobacteria, resembles the proposed single molecule oscillator. Besides, we speculate if such minimal systems could have existed in an RNA world. I will also present how the regulatory network of the cell cycle could have emerged from this system and what are the consequences of this possible evolution from a single antagonistic kinase-phosphatase network.

Fri, 30 Nov 2018

12:00 - 12:30
L4

I'm not a number: Social data science at the Oxford Internet Institute

Scott Hale
(Oxford Internet Institute)
Abstract

The social sciences are undergoing a profound shift as new data and methods emerge to study human behaviour. These data offer tremendous opportunity but also mathematical and statistical challenges that the field has yet to fully understand. This talk will give an overview of social data science research faculty are undertaking at the Oxford Internet Institute, a multidisciplinary department of the University. Projects include studying the flow of information across languages, the role of political bots, and volatility in public attention.

Fri, 30 Nov 2018

11:45 - 13:15
L3

InFoMM CDT Group Meeting

Michael McPhail, Joseph Field, Florian Wechsung, Fabian Ying
(Mathematical Institute)