Mon, 10 Mar 2025
16:00
C4

Sums of integers divisible by the sum of their digits

Kate Thomas
(University of Oxford)
Abstract

A base-g Niven number is an integer divisible by the sum of its digits in base-g. We show that any sufficiently large integer can be written as the sum of three base-3 Niven numbers, and comment on the extension to other bases. This is an application of the circle method, which we use to count the number of ways an integer can be written as the sum of three integers with fixed, near-average, digit sum. 

Mon, 10 Mar 2025
15:30
L5

Uniform spectral gaps above the tempered gap

Vikram Giri
(ETH Zurich)
Abstract
We will explore the possibility of getting uniform spectral gaps for some invariant differential operators on hyperbolic manifolds. We will see a construction of a sequence of hyperbolic 3-manifolds with a uniform spectral gap for the 1-form Laplacian acting on coclosed forms and conclude with an application of having such gaps to torsion homology growth. Based on joint works with A. Abdurrahman, A. Adve, B. Lowe, and J. Zung.
Mon, 10 Mar 2025
15:30
L3

Recent progress on quantitative propagation of chaos

Dr Daniel Lacker
(Columbia University)
Abstract

When and how well can a high-dimensional system of stochastic differential equations (SDEs) be approximated by one with independent coordinates? This fundamental question is at the heart of the theory of mean field limits and the propagation of chaos phenomenon, which arise in the study of large (many-body) systems of interacting particles. This talk will present recent sharp quantitative answers to this question, both for classical mean field models and for more recently studied non-exchangeable models. Two high-level ideas underlie these answers. The first is a simple non-asymptotic construction, called the independent projection, which is a natural way to approximate a general SDE system by one with independent coordinates. The second is a "local" perspective, in which low-dimensional marginals are estimated iteratively by adding one coordinate at a time, leading to surprising improvements on prior results obtained by "global" arguments such as subadditivity inequalities. In the non-exchangeable setting, we exploit a surprising connection with first-passage percolation.

Mon, 10 Mar 2025
14:15
L5

A functorial approach to quantization of symplectic singularities

Lewis Topley
(University of Bath)
Abstract

Namikawa has shown that the functor of flat graded Poisson deformations of a conic symplectic singularity is unobstructed and pro-representable. In a subsequent work, Losev showed that the universal Poisson deformation admits, a quantization which enjoys a rather remarkable universal property. In a recent work, we have repackaged the latter theorem as an expression of the representability of a new functor: the functor of quantizations. I will describe how this theorem leads to an easy proof of the existence of a universal equivariant quantizations, and outline a work in progress in which we describe a presentation of a rather complicated quantum Hamiltonian reduction: the finite W-algebra associated to a nilpotent element in a classical Lie algebra. The latter result hinges on new presentations of twisted Yangians.

Mon, 10 Mar 2025
13:00
L6

Higher-form Symmetries in Linear Gravity

Adam Kmec
Abstract

Recently, work has been done to understand higher-form symmetries in linear gravity. Just like Maxwell theory, which has both electric and magnetic U(1) higher form symmetries, linearised gravity exhibits analogous structure. The authors of
[https://arxiv.org/pdf/2409.00178] investigate electric and magnetic higher form symmetries in linearised gravity, which correspond to shift symmetries of the graviton and the dual graviton respectively. By attempting to gauge the two symmetries, the authors investigate the mixed ’t Hooft anomalies anomaly structure of linearised gravity. Furthermore, if a specific shift symmetry is considered, the corresponding charges are related to Roger Penrose's quasi-local charge construction.

Based on: [https://arxiv.org/pdf/2410.08720][https://arxiv.org/pdf/2409.00178][https://arxiv.org/pdf/2401.17361]

Fri, 07 Mar 2025
15:00
L4

Central limit theorems and the smoothed bootstrap in topological data analysis

Johannes Krebs
(Katholische Universitat Eichstätt-Ingolstadt)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Abstract
We study central limit theorems for persistent Betti numbers and the Euler characteristic of random simplicial complexes built from Poisson and Binomial processes in the critical regime. The approach relies on the idea of stabilizing functionals and dates back to Kesten and Lee (1996) as well as Penrose and Yukich (2001).
However, in many situations such limit theorems prove difficult to use in practice, motivating the use of a bootstrap approach, a resampling technique in mathematical statistics. To this end, we investigate multivariate bootstrap procedures for general stabilizing statistics with a specific focus on the application to topological data analysis. We show that a smoothed bootstrap procedure gives a consistent estimation. Specific statistics considered for the bootstrap include persistent Betti numbers and Euler characteristics of Čech and Vietoris-Rips complexes.
Fri, 07 Mar 2025
12:00
L5

A general hierarchy of charges for sub-leading soft theorems at all orders

Giorgio Pizzolo
(Durham University)
Abstract
The deep connection between the soft limits of scattering amplitudes and asymptotic symmetries relies on the construction of a well-defined phase space at null infinity, which can be set up perturbatively via an expansion in the soft particle energy. At leading order, this result has by now been established.
In this talk, I will present a new general procedure for constructing the extended phase space for Yang-Mills theory, based on the Stueckelberg mechanism, that is capable of handling the asymptotic symmetries and construction of charges responsible for sub-leading soft theorems at all orders. The generality of the procedure allows it to be directly applied to the computation of both three- and loop-level soft limits. Based on [2407.13556] and [2405.06629], with Silvia Nagy and Javier Peraza.
Fri, 07 Mar 2025

11:00 - 12:00
L4

Nonlocal advection-diffusion for modelling organism space use and movement

Prof Jonathan Potts
(Department of Computer Science The University of Sheffield)
Abstract

How do mobile organisms situate themselves in space?  This is a fundamental question in both ecology and cell biology but, since space use is an emergent feature of movement processes operating on small spatio-temporal scales, it requires a mathematical approach to answer.  In recent years, increasing empirical research has shown that non-locality is a key aspect of movement processes, whilst mathematical models have demonstrated its importance for understanding emergent space use patterns.  In this talk, I will describe a broad class of models for modelling the space use of interacting populations, whereby directed movement is in the form of non-local advection.  I will detail various methods for ascertaining pattern formation properties of these models, fundamental for answering the question of how organisms situate themselves in space, and describe some of the rich variety of patterns that emerge. I will also explain how to connect these models to data on animal and cellular movement.

Thu, 06 Mar 2025

17:00 - 18:00
L3

Orthogonal types to the value group and descent

Mariana Vicaria
(University of Münster)
Abstract
First, I will present a simplified proof of descent for stably dominated types in ACVF. I will also state a more general version of descent for stably dominated types in any theory, dropping the hypothesis of the existence of invariant extensions. This first part is joint work with Pierre Simon.
 
In the second part, motivated by the study of the space of definable types orthogonal to the value group in a henselian valued field and their cohomology; I will present a theorem that states that over an algebraically closed base of imaginary elements,  a global invariant type is residually dominated (essentially controlled by the residue field) if and only if it is orthogonal to the value group , if and only if its reduct in ACVF is stably dominated. This is joint work with Pablo Cubides and Silvain Rideau- Kikuchi. The result extend to some valued fields with operators.
Thu, 06 Mar 2025
16:00
L6

Geometry and incompleteness of G_2-moduli spaces

Thibault Langlais
((University of Oxford))
Abstract

Riemannian manifolds with holonomy G_2 form an exceptional class of Ricci-flat manifolds occurring only in dimension 7. In the compact setting, their moduli spaces are known to be smooth (unobstructed), finite-dimensional, and to carry a natural Riemannian structure induced by the L^2-metric; but besides this very little is known about the global properties of G_2-moduli spaces. In this talk, I will review the basics of G_2-geometry and present new results concerning the distance theory and the geometry of the moduli spaces.
 

Thu, 06 Mar 2025
16:00
Lecture Room 4, Mathematical Institute

Manin's conjecture for Châtelet surfaces

Katherine Woo
(Princeton)
Abstract

We resolve Manin's conjecture for all Châtelet surfaces over Q
(surfaces given by equations of the form x^2 + ay^2 = f(z)) -- in other
words, we establish asymptotics for the number of rational points of
increasing height. The key analytic ingredient is estimating sums of
Fourier coefficients of modular forms along polynomial values.

Thu, 06 Mar 2025

14:00 - 15:00
Lecture Room 3

Near-optimal hierarchical matrix approximation

Diana Halikias
(Cornell University)
Abstract

Can one recover a matrix from only matrix-vector products? If so, how many are needed? We will consider the matrix recovery problem for the class of hierarchical rank-structured matrices. This problem arises in scientific machine learning, where one wishes to recover the solution operator of a PDE from only input-output pairs of forcing terms and solutions. Peeling algorithms are the canonical method for recovering a hierarchical matrix from matrix-vector products, however their recursive nature poses a potential stability issue which may deteriorate the overall quality of the approximation. Our work resolves the open question of the stability of peeling. We introduce a robust version of peeling and prove that it achieves low error with respect to the best possible hierarchical approximation to any matrix, allowing us to analyze the performance of the algorithm on general matrices, as opposed to exactly hierarchical ones. This analysis relies on theory for low-rank approximation, as well as the surprising result that the Generalized Nystrom method is more accurate than the randomized SVD algorithm in this setting. 

Thu, 06 Mar 2025
13:00
N3.12

Abstract Lego - building 5d SCFTs from M-theory on Calabi-Yau threefolds

Oscar Lewis
Abstract

Placing M-theory on a non-compact Calabi-Yau threefold allows us to construct low energy field theories in 5d with minimal supersymmetry, in a limit in which gravity is decoupled.  We venture into this topic by introducing all the building blocks we hope to capture in a 5d SCFT. Next, from the geometric perspective we realise the 5d gauge theory data from the objects within the Calabi-Yau geometry, given by curves, divisors, rulings, and singularities. After seeing how the geometry captures all the possible field theory data, we illustrate how to build some simple 5d SCFTs by placing M-theory on toric Calabi-Yau threefolds.

 

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 06 Mar 2025

12:00 - 12:30
Lecture room 5

How to warm-start your unfolding network

Vicky Kouni
(Mathematical Institute (University of Oxford))
Abstract

We present a new ensemble framework for boosting the performance of overparameterized unfolding networks solving the compressed sensing problem. We combine a state-of-the-art overparameterized unfolding network with a continuation technique, to warm-start a crucial quantity of the said network's architecture; we coin the resulting continued network C-DEC. Moreover, for training and evaluating C-DEC, we incorporate the log-cosh loss function, which enjoys both linear and quadratic behavior. Finally, we numerically assess C-DEC's performance on real-world images. Results showcase that the combination of continuation with the overparameterized unfolded architecture, trained and evaluated with the chosen loss function, yields smoother loss landscapes and improved reconstruction and generalization performance of C-DEC, consistently for all datasets.

Thu, 06 Mar 2025

11:00 - 12:00
L5

Translation varieties (part 2)

Ehud Hrushovski
(University of Oxford)
Abstract

In algebraic geometry, the technique of dévissage reduces many questions to the case of curves. In difference and differential algebra, this is not the case, but the obstructions can be closely analysed. In difference algebra, they are difference varieties defined by equations of the form \si(𝑥)=𝑔𝑥\si(x)=gx, determined by an action of an algebraic group and an element g of this group. This is joint work with Zoé Chatzidakis.

Wed, 05 Mar 2025
16:00
L6

The BNSR Invariant of an Artin group and graph colorings.

Marcos Escartin-Ferrer
(Universidad Zaragoza)
Abstract

The BNSR Invariant is a classical geometric invariant that encodes the finite generation of all coabelian subgroups of a given finitely generated group. The aim of this talk is to present a conjecture about the structure of the BNSR invariant of an Artin group and to present a new family in which the conjecture is true in terms of graph colorings.

Wed, 05 Mar 2025
11:00
L4

Scaling limits of stochastic transport equations on manifolds

Wei Huang
(Freie Universität Berlin)
Abstract

In this talk, I will present the generalization of scaling limit results for stochastic transport equations on torus by Flandoli, Galeati and Luo, to compact manifolds. We consider the stochastic transport equations driven by colored space-time noise(smooth in space, white in time) on a compact Riemannian manifold without boundary. Then we study the scaling limits of stochastic transport equations, tuning the noise in such a way that the space covariance of the noise on the diagonal goes to identity matrix but the covariance operator itself goes to zero, which includes the large scale analysis regime with diffusive scaling.

We obtain different scaling limits depending on the initial data. With space white noise as initial data, the solutions converge in distribution to the solution of a stochastic heat equation with additive noise. With square integrable initial data, the solutions of transport equation converge to the solution of the deterministic heat equation, and we give quantitative estimates on the convergence rate.

Tue, 04 Mar 2025
16:00
L6

Fermionic structure in the Abelian sandpile and the uniform spanning tree

Alessandra Cipriani
(University College London)
Abstract
In this talk we consider a stochastic system of sand grains moving on a finite graph: the Abelian sandpile, a prototype of self-organized lattice model. We focus on the function that indicates whether a single grain of sand is present at a site, and explore its connections with the discrete Gaussian free field, the uniform spanning tree, and the fermionic Gaussian free field. Based on joint works with L. Chiarini (Durham), R. S. Hazra (Leiden), A. Rapoport and W. Ruszel (Utrecht).



 

Tue, 04 Mar 2025
16:00
C3

Connes' rigidity conjecture for groups with infinite center

Adriana Fernández I Quero
(University of Iowa)
Abstract

We propose a natural version of Connes' Rigidity Conjecture (1982) that involves property (T) groups with infinite centre. Using methods at the rich intersection between von Neumann algebras and geometric group theory, we identify several instances where this conjecture holds. This is joint work with Ionut Chifan, Denis Osin, and Hui Tan.

Tue, 04 Mar 2025
15:30
L4

Mixed characteristic analogues of Du Bois and log canonical singularities

Joe Waldron
(Michigan State University)
Abstract

Singularities are measured in different ways in characteristic zero, positive characteristic, and mixed characteristic. However, classes of singularities usually form analogous groups with similar properties, with an example of such a group being klt, strongly F-regular and BCM-regular.  In this talk we shall focus on newly introduced mixed characteristic counterparts of Du Bois and log canonical singularities and discuss their properties. 

This is joint work with Bhargav Bhatt, Linquan Ma, Zsolt Patakfalvi, Karl Schwede, Kevin Tucker and Jakub Witaszek. 

Tue, 04 Mar 2025
15:00
L6

Virtually free-by-cyclic RFRS groups

Sam Fisher
Abstract

A group is free-by-cyclic if it is an extension of a free group by a cyclic group. Knowing that a group is virtually free-by-cyclic is often quite useful; it implies that the group is coherent and that it is cohomologically good in the sense of Serre. In this talk we will give a homological characterisation of when a finitely generated RFRS group is virtually free-by-cylic and discuss some generalisations.

Tue, 04 Mar 2025
14:00
L6

Prosoluble subgroups of the profinite completion of 3-manifold groups

Pavel Zalesski
(University of Brasilia)
Abstract

In recent years there has been a great deal of interest in detecting properties of the fundamental group $\pi_1M$ of a $3$-manifold via its finite quotients, or more conceptually by its profinite completion.

This motivates the study of the profinite completion $\widehat {\pi_1M}$ of the fundamental group of a $3$-manifold. I shall discuss a description of the  finitely generated prosoluble subgroups of the profinite completions of all 3-manifold groups and of related groups of geometric nature.

Tue, 04 Mar 2025
13:00
L6

Irrelevant Perturbations in 1+1D Integrable Quantum Field Theory

Olalla Castro Alvaredo
(City St George's, University of London)
Abstract

In this talk I will review recent results on the development of a form factor program for integrable quantum field theories (IQFTs) perturbed by irrelevant operators. It has been known for a long time that under such perturbations integrability is preserved and that the two-body scattering phase gets deformed in a simple manner. The consequences of such a deformation are stark, leading to theories that exhibit a so-called Hagedorn transition and no UV completion. These phenomena manifest physically in several distinct ways. In our work we have mainly asked the question of how the deformation of the S-matrix translates into the correlation functions of the deformed theory. Does the scaling of correlators at long and short distances capture any of the "pathologies" mentioned above? Can our understanding of irrelevant perturbations tell us something about the space of IQFTs and about their form factors? In this talk I will answer these questions in the afirmative, summarising work in collaboration with Stefano Negro, Fabio Sailis and István M. Szécsényi.