17:00
Harmonic measure, absolute continuity, and rectifiability
Abstract
For reasonable domains $\Omega\subseteq\mathbb{R}^{d+
1}$, and given some boundary data $f\in C(\partial\Omega)$, we can solve the Dirichlet problem and find a harmonic function $u_{f}$ that agrees with $f$ on $\partial\Omega$. For $x_{0}\in \Omega$, the association $f\rightarrow u_{f}(x_{0})$. is a linear functional, so the Riesz Representation gives us a measure $\omega_{\Omega}^{x_{0}}$ on $\partial\Omega$ called the harmonic measure with pole at $x_{0}$. One can also think of the harmonic measure of a set $E\subseteq \partial\Omega$ as the probability that a Brownian motion of starting at $x_{0}$ will first hit the boundary in $E$. In this talk, we will survey some very recent results about the relationship between the measure theoretic behavior of harmonic measure and the geometry of the boundary of its domain. In particular, we will study how absolute continuity of harmonic measure with respect to $d$-dimensional Hausdorff measure implies rectifiability of the boundary and vice versa.