Weak limits of Sobolev homeomorphisms

23 November 2017

In the study of variational models for non-linear elasticity in the context of proving regularity we are led to the challenging so-called Ball-Evan's problem of approximating a Sobolev homeomorphism with diffeomorphisms in its Sobolev space. In some cases however we are not able to guarantee that the limit of a minimizing sequence is a homeomorphism and so the closure of Sobolev homeomorphisms comes into the game. For $p\geq 2$ they are exactly Sobolev monotone maps and for $1\leq p<2$ the monotone maps are intricately related to these limits. In our paper we prove that monotone maps can be approximated by diffeomorphisms in their Sobolev (or Orlicz-Sobolev) space including the case $p=1$ not proven by Iwaniec and Onninen.

  • PDE CDT Lunchtime Seminar