Fri, 03 Mar 2017

16:00 - 17:00
L1

Reciprocity laws and torsion classes

Ana Caraiani
(University of Bonn)
Abstract

The law of quadratic reciprocity and the celebrated connection between modular forms and elliptic curves over Q are both examples of reciprocity laws. Constructing new reciprocity laws is one of the goals of the Langlands program, which is meant to connect number theory with harmonic analysis and representation theory.

In this talk, I will survey some recent progress in establishing new reciprocity laws, relying on the Galois representations attached to torsion classes which occur in the cohomology of arithmetic hyperbolic 3-manifolds. I will outline joint work in progress on better understanding these Galois representations, proving modularity lifting theorems in new settings, and applying this to elliptic curves over imaginary quadratic fields.

Fri, 03 Mar 2017

14:45 - 15:30
L3

Regenerative Medicine from an Engineer's Perspective

Professor Cathy Ye
(Institute of Biomedical Engineering University of Oxford)
Abstract

Regenerative medicine offers great hope in curing many currently untreatable diseases. Tissue engineering and stem cell therapy are the two main components of regenerative medicine. In this talk, I will discuss how engineering can make contributions to this highly interdisciplinary field, including biomaterials as 3D scaffolds, bioreactor design, and stem cell bioprocessing.

Fri, 03 Mar 2017
14:30
C5

Ultraproducts and Spec (^Z)

Paola D'Aquino
(Naples)
Abstract

We give a description of the spectra of $\hat{\mathbb Z}$ and of the
finite adeles using  ultraproducts. In describing the prime ideals and the
localizations, ultrapowers of the group $\mathbb Z$ and ultraproducts of
rings of $p$-adic integers are used.

Fri, 03 Mar 2017

14:00 - 14:45
L3

En route to mending broken hearts

Prof Paul Riley
(DPAG University of Oxford)
Abstract

We adopt the paradigm of understanding how the heart develops during pregnancy as a first principal to inform on adult heart repair and regeneration. Our target for cell-based repair is the epicardium and epicardium-derived cells (EPDCs) which line the outside of the forming heart and contribute vascular endothelial and smooth muscle cells to the coronary vasculature, interstitial fibroblasts and cardiomyocytes. The epicardium can also act as a source of signals to condition the growth of the underlying embryonic heart muscle. In the adult heart, whilst the epicardium is retained, it is effectively quiescent. We have sought to extrapolate the developmental potential of the epicardium to the adult heart following injury by stimulating dormant epicardial cells to give rise to new muscle and vasculature. In parallel, we seek to modulate the local environment into which the new cells emerge: a cytotoxic mixture of inflammation and fibrosis which prevents cell engraftment and integration with survived heart tissue. To this end we manipulate the lymphatic vessels in the heart given that, elsewhere in the body, the lymphatics survey the immune system and modulate inflammation at peripheral injury sites. We recently described the development of the cardiac lymphatic vasculature and revealed in the adult heart that they undergo increased vessel sprouting (lymphangiogenesis) in response to injury, to improve function, remodelling and fibrosis. We are currently investigating whether increased lymphangiogenesis functions to clear immune cells and constrain the reparative response for optimal healing.

Fri, 03 Mar 2017

11:00 - 12:00
C3

p-adic deformation of motivic Chow groups

Andreas Langer
(University of Exeter)
Abstract

For a smooth projective scheme Y over W(k) we consider an element in the motivic Chow group of the reduction Y_m over the truncated Witt ring W_m(k) and give a "Hodge" criterion - using the crystalline cycle class in relative crystalline cohomology - for the element to the lift to the continuous Chow group of Y. The result extends previous work of Bloch-Esnault-Kerz on the p-adic variational Hodge conjecture to a relative setting. In the course of the proof we derive two new results on the relative de Rham-Witt complex and its Nygaard filtration, and work with relative syntomic complexes to define relative motivic complexes for a smooth, formal lifting of Y_m over W(W_m(k)).

Fri, 03 Mar 2017

10:00 - 11:00
L4

Predictions for Roads

Steve Hilditch
(Thales)
Abstract

Road travel is taking longer each year in the UK. This has been true for the last four years. Travel times have increased by 4% in the last two years. Applying the principle finding of the Eddington Report 2006, this change over the last two years will cost the UK economy an additional £2bn per year going forward even without further deterioration. Additional travel times are matched by a greater unreliability of travel times.

Knowing demand and road capacity, can we predict travel times?

We will look briefly at previous partial solutions and the abundance of motorway data in the UK. Can we make a breakthrough to achieve real-time predictions?

Fri, 03 Mar 2017

10:00 - 11:00
N3.12

Geometric properties related to Beilinson-Bernstein localisation

Richard Mathers
(University of Oxford)
Abstract

In recent years, Ardakov and Wadsley have been interested in extending the classical theory of Beilinson-Bernstein localisation to different contexts. The classical proof relies on fundamental geometric properties of the dual nilcone of a semisimple Lie algebra; in particular, finding a nice desingularisation of the nilcone and demonstrating that it is normal. I will attempt to explain the relationship between these properties and the proof, and discuss some areas of my own work, which focuses on proving analogues of these results in the case where the characteristic of the ground field K is bad.

Thu, 02 Mar 2017

16:15 - 17:15
L6

Minimal weights of mod-p Hilbert modular forms

Payman Kassaei
(Kings College London)
Abstract

I will discuss results on the characterization of minimal weights of mod-p Hilbert modular forms using results on stratifications of Hilbert Modular Varieties.  This is joint work with Fred Diamond.

Thu, 02 Mar 2017

16:00 - 17:00
L3

Bubble Dynamics, Self-assembly of a filament by curvature-inducing proteins

Robert van Gorder, James Kwiecinski
(University of Oxford)
Abstract

Bubble Dynamics

We shall discuss certain generalisations of the Rayleigh Plesset equation for bubble dynamics

 

Self-assembly of a filament by curvature-inducing proteins

We explore a simplified macroscopic model of membrane shaping by means of curvature-sensing proteins. Equations describing the interplay between the shape of a freely floating filament in a fluid and the adhesion kinetics of proteins are derived from mechanical principles. The constant curvature solutions that arise from this system are studied using weakly nonlinear analysis. We show that the stability of the filament’s shape is completely characterized by the parameters associated with protein recruitment and establish that in the bistable regime, proteins aggregate on the filament forming regions of high and low curvatures. This pattern formation is then followed by phase-coarsening that resolves on a time-scale dependent on protein diffusion and drift across the filament, which contend to smooth and maintain the pattern respectively. The model is generalized for multiple species of proteins and we show that the stability of the assembled shape is determined by a competition between proteins attaching on opposing sides.

Thu, 02 Mar 2017

16:00 - 17:30
L4

Inequality in a monetary dynamic macroeconomic model

Matheus Grasselli
(McMaster University Canada)
Abstract

Thomas Piketty's influential book “Capital in the Twenty-First Century” documents the marked and unequivocal rise of income and wealth inequality observed across the developed world 
in the last three decades. His extrapolations into the distant future are much more controversial and has 
has been subject to various criticisms from both mainstreams and heterodox economists. This motivates the search for an alternative standpoint incorporating 
heterodox insights such as endogenous money and the lessons from the Cambridge capital controversies. We argue that the Goodwin-Keen approach paves the road towards such an alternative.
We first consider a modified Goodwin-Keen model driven by consumption by households, instead of investment by firms, leading to the same qualitative features 
of the original Keen 1995 model, namely the existence of an undesirable equilibrium characterized by infinite private debt ratio and zero employment, 
in addition to a desirable one with finite debt and non-zero employment. By further subdividing the household sector into workers and investors, we are able to investigate their relative 
income and wealth ratios for in the context of these two long-run equilibria, providing a testable link between asymptotic inequality and private debt accumulation.

Thu, 02 Mar 2017
12:00
L2

Nonlocal quadratic forms, regularity theory and kinetic equations

Moritz Kassmann
(Universität Bielefeld)
Abstract

We report on recent developments in the study of nonlocal operators. The central object of the talk are quadratic forms similar to those that define Sobolev spaces of fractional order. These objects are naturally linked to Markov processes via the theory of Dirichlet forms. We provide regularity results for solutions to corresponding integrodifferential equations. Our emphasis is on forms with singularand anisotropic measures. Some of the objects under consideration are related to the Boltzmann equation, which leads to an interesting question of comparability of quadrativ forms. The talk is based on recent results joint with B. Dyda and with K.-U. Bux and T. Schulze.

Thu, 02 Mar 2017
11:00
C5

A New Technique for Definability in Function Fields.

Philip Dittmann
(Oxford)
Abstract


Generalising previous definability results in global fields using
quaternion algebras, I will present a technique for first-order
definitions in finite extensions of Q(t). Applications include partial
answers to Pop's question on Isomorphism versus Elementary Equivalence,
and some results on Anscombe's and Fehm's notion of embedded residue.

Wed, 01 Mar 2017
16:00
C1

Treelike structures in boundaries of hyperbolic groups

Benjamin Barrett
(University of Cambridge)
Abstract

Inspired by the theory of JSJ decomposition for 3-manifolds, one can define the JSJ decomposition of a group as a maximal canonical way of cutting it up into simpler pieces using amalgamated products and HNN extensions. If the group in question has some sort of non-positive curvature property then one can define a boundary at infinity for the group, which captures its large scale geometry. The JSJ decomposition of the group is then reflected in the treelike structure of the boundary. In this talk I will discuss this connection in the case of hyperbolic groups and explain some of the ideas used in its proof by Brian Bowditch.

Wed, 01 Mar 2017
15:00
L3

Short addition sequences for theta functions

Andreas Enge
(University of Bordeaux)
Abstract

Classical modular functions and forms may be evaluated numerically using truncations of the q-series of the Dedekind eta-function or of Jacobi theta-constants. We show that the special structure of the exponents occurring in these series makes it possible to evaluate their truncations to N terms with N+o(N) multiplications; the proofs use elementary number theory and sometimes rely on a Bateman-Horn type conjecture. We furthermore obtain a baby-step giant-step algorithm needing only a sublinear number of multiplications, more precisely O (N/log^r N) for any r>0. Both approaches lead to a measurable speed-up in practical precision ranges, and push the cross-over point for the asymptotically faster arithmetic- geometric mean algorithm even further.

(joint work with William Hart and Fredrik Johansson) ​

Wed, 01 Mar 2017

11:00 - 12:30
N3.12

Kneser's Conjecture on Free Products

Gareth Wilkes
(University of Oxford)
Abstract

In this talk I will describe another strong link between the behaviour of a 3-manifold and the behaviour of its fundamental group- specifically the theorem that the group splits as a free product if and only if the 3-manifold may be divided into two parts using a 2-sphere inducing this splitting. This theorem is for some reason known as Kneser's conjecture despite having been proved half a century ago by Stallings.

Tue, 28 Feb 2017

15:45 - 16:45

Tropical compactifications, Mori Dream Spaces and Minkowski bases

Elisa Postinghel
(Loughborough University)
Abstract

Given a Mori Dream Space X, we construct via tropicalisation a model dominating all the small Q-factorial modifications of X. Via this construction we recover a Minkowski basis for the Newton-Okounkov bodies of Cartier divisors on X and hence generators of the movable cone of X. 
This is joint work with Stefano Urbinati.
 

Tue, 28 Feb 2017
14:15
L4

Sklyanin algebras are minimal surfaces

Sue Sierra
(University of Edinburgh)
Abstract

In the ongoing programme to classify noncommutative projective surfaces (connected graded noetherian domains of Gelfand-Kirillov dimension three) a natural question is:  what are the minimal models within a birational class?  It is not even clear a priori what the correct definition is of a minimal model in this context.

We show that a generic Sklyanin algebra (a noncommutative analogue of P^2) satisfies the surprising property that it has no birational connected graded noetherian overrings, and explain why this is a reasonable definition of 'minimal model.' We show also that the noncommutative versions of P^1xP^1 and of the Hirzebruch surface F_2 are minimal.
This is joint work in progress with Dan Rogalski and Toby Stafford.

 

Tue, 28 Feb 2017

12:00 - 13:15
L4

Critical L-values from multi-loop Feynman diagrams

David Broadhurst
(Open University)
Abstract


I shall report on recent progress, in Australia and Germany, on the empirical evaluation of special values of L-functions by minors of period matrices whose elements include Feynman integrals from diagrams with up to 20 loops. Previously such relations were known only for diagrams with up to 6 loops.
 

Mon, 27 Feb 2017
15:45
L6

From moduli spaces of manifolds to K-theory

Ulrike Tillmann
(Oxford)
Abstract

For mapping class groups of surfaces it is well-understood that their homology stability is closely related to the fact that they give rise to an infinite loop space. Indeed, they define an operad whose algebras group complete to infinite loop spaces.

In recent work with Basterra, Bobkova, Ponto and Yaekel we define operads with homology stability (OHS) more generally and prove that they are infinite loop space operads in the above sense. The strong homology stability results of Galatius and Randal-Williams for moduli spaces of manifolds can be used to construct examples of OHSs. As a consequence the map to K-theory defined by the action of the diffeomorphisms on the middle dimensional homology can be shown to be a map of infinite loop spaces.

Mon, 27 Feb 2017

15:45 - 16:45
L3

Perturbation to conservation laws

XUE-MEI LI
(University of Warwick)
Abstract

If a dynamical system has a conservation law, i.e. a constant along the trajectory of the motion, the study of its evolution along the trajectories of a perturbed system becomes interesting. Conservation laws can be seen everywhere, especially at the level of probability distributions of a reduced dynamic.  We explain this with a number of models, in which we see a singular perturbation problem and identify a conservation law, the latter is used to seek out the correct scale to work with and to reduce the complexity of the system. The reduced dynamic consists of a family of  ODEs with rapidly oscillating right hands side from which in the limit we obtain a Markov process. For stochastic completely integrable system, the limit describes the evolution of the level sets of the family of Hamiltonian functions over a very large time scale.

Mon, 27 Feb 2017

14:15 - 15:15
L3

The Yang-Mills heat equation on compact manifolds with boundary.

NELIA CHARALAMBOUS
(University of Cyprus)
Abstract

The Yang-Mills heat equation is the gradient flow corresponding to the Yang-Mills functional. It was initially introduced by S. K. Donaldson to study the existence of irreducible Yang-Mills connections on the projective plane. In this talk, we will consider this equation over compact three-manifolds with boundary. It is a nonlinear weakly parabolic equation, but we will see how one can prove long-time existence and uniqueness of solutions by gauge symmetry breaking. We will also demonstrate some strong regularization results for the solution and see how they lead to detailed short-time asymptotic estimates, as well as the long-time convergence of the Wilson loop functions.