Wed, 08 Jun 2016
15:00
L4

Additive Combinatorics, Field Extensions, and Coding Theory.

Gilles Zémor
(University of Bordeaux)
Abstract
Additive combinatorics enable one to characterise subsets S of elements in a group such that S+S has

small cardinality. In particular a theorem of Vosper says that subsets of integers modulo a prime p

with minimal sumsets can only be arithmetic progressions, apart from some degenerate cases. We are

interested in q-analogues of these results, namely characterising subspaces S in some algebras such

that the linear span of its square S^2 has small dimension.

Analogues of Vosper's theorem will imply that such spaces will have bases consisting of elements in

geometric progression.

We derive such analogues in extensions of finite fields, where bounds on codes in the space of

quadratic forms play a crucial role. We also obtain that under appropriately formulated conditions,

linear codes with small squares for the component-wise product can only be generalized Reed-Solomon

codes.



Based on joint works with Christine Bachoc and Oriol Serra, and with Diego Mirandola.
Wed, 08 Jun 2016

11:30 - 12:30
N3.12

TBA

Alex Betts
(Oxford)
Tue, 07 Jun 2016
17:00
C1

Operator-valued $(L^{p},L^{q})$-Fourier multipliers

Jan Rozendaal (in Warsaw)
(Polish Academy of Sciences)
Abstract
Although much of the theory of Fourier multipliers has focused on the $(L^{p},L^{p})$-boundedness

 of such operators, for many applications it suffices that a Fourier multiplier operator is bounded

 from $L^{p}$ to $L^{q}$ with p and q not necessarily equal. Moreover, one can derive 

(L^{p},L^{q})-boundedness results for $p\neq q$ under different, and often weaker, assumptions

 than in the case $p=q$. In this talk I will explain some recent results on the

 $(L^{p},L^{q})$-boundedness of operator-valued Fourier multipliers. Also, I will sketch some

 applications to the stability theory for $C_{0}$-semigroups and functional calculus theory. 

 

This talk will be transmitted from Warsaw to us and Dresden, provided that Warsaw get things set up.  We will not be using the TCC facility,

so the location will be C1.

Tue, 07 Jun 2016

15:45 - 16:45
L4

Matrix factorisation of Morse-Bott functions

Constantin Teleman
(Oxford)
Abstract

For a holomorphic function (“superpotential”)  W: X —> C on a complex manifold X, one defines the (2-periodic) matrix factorisation category MF(X;W), which is supported on the critical locus Crit(W) of W. At a Morse singularity, MF(X;W) is equivalent to the category of modules over the Clifford algebra on the tangent space TX. It had been suggested by Kapustin and Rozansky that, for Morse-Bott W, MF(X;W) should be equivalent to the (2-periodicised) derived category of Crit(W), twisted by the Clifford algebra of the normal bundle. I will discuss why this holds when the first neighbourhood of Crit(W) splits, why it fails in general, and will explain the correct general statement.

Tue, 07 Jun 2016
14:30
L6

The Sharp Threshold for Making Squares

Paul Balister
(Memphis)
Abstract

Many of the fastest known algorithms for factoring large integers rely on finding subsequences of randomly generated sequences of integers whose product is a perfect square. Motivated by this, in 1994 Pomerance posed the problem of determining the threshold of the event that a random sequence of N integers, each chosen uniformly from the set
{1,...,x}, contains a subsequence, the product of whose elements is a perfect square. In 1996, Pomerance gave good bounds on this threshold and also conjectured that it is sharp.

In a paper published in Annals of Mathematics in 2012, Croot, Granville, Pemantle and Tetali significantly improved these bounds, and stated a conjecture as to the location of this sharp threshold. In recent work, we have confirmed this conjecture. In my talk, I shall give a brief overview of some of the ideas used in the proof, which relies on techniques from number theory, combinatorics and stochastic processes. Joint work with Béla Bollobás and Robert Morris.

Tue, 07 Jun 2016

12:30 - 13:30
Oxford-Man Institute

Complete-market stochastic volatility models (Joint seminar with OMI)

Mark Davis
((Imperial College, London))
Abstract
It is an old idea that incomplete markets should be completed by adding traded options as non-redundant
securities. While this is easy to show in a finite-state setting, getting a satisfactory theory in
continuous time has proved highly problematic. The goal is however worth pursuing since it would
provide arbitrage-free dynamic models for the whole volatility surface. In this talk we describe an
approach in which all prices in the market are functions of some underlying Markov factor process.
In this setting general conditions for market completeness were given in earlier work with J.Obloj,
but checking them in specific instances is not easy. We argue that Wishart processes are good
candidates for modelling the factor process, combining efficient computational methods with an
adequate correlation structure.
Mon, 06 Jun 2016

15:45 - 16:45
L6

Hausdorff dimension and complexity of Kleinian groups

​​​Yong Hou
(IAS Princeton)
Abstract

In this talk I'll give a general presentation of my recent work that a purely loxodromic Kleinian group of Hausdorff dimension<1 is a classical Schottky group. This gives a complete classification of all Kleinian groups of dimension<1. The proof uses my earlier result on the classification of Kleinian groups of sufficiently small Hausdorff dimension. This result in conjunction to another work (joint with Anderson) provides a resolution to Bers uniformization conjecture. No prior knowledge on the subject is assumed.

Mon, 06 Jun 2016

15:45 - 16:45
C6

A backward stochastic differential equation approach to singular stochastic control

YING HU
(Universite Rennes 1)
Abstract

Singular stochastic control problems ae largely studied in literature.The standard approach is to study the associated Hamilton-Jacobi-Bellman equation (with gradient constraint). In this work, we use a different approach (BSDE:Backward stochastic differntial equation approach) to show that the optimal value is a solution to BSDE.

The advantage of our approach is that we can study this kind of singular stochastic control with path-dependent coefficients

Mon, 06 Jun 2016
14:15
L4

Obstructions to positive scalar curvature via submanifolds of different codimension

Thomas Schick
(Gottingen)
Abstract

Question: Given a smooth compact manifold $M$ without boundary, does $M$
 admit a Riemannian metric of positive scalar curvature?

 We focus on the case of spin manifolds. The spin structure, together with a
 chosen Riemannian metric, allows to construct a specific geometric
 differential operator, called Dirac operator. If the metric has positive
 scalar curvature, then 0 is not in the spectrum of this operator; this in
 turn implies that a topological invariant, the index, vanishes.

  We use a refined version, acting on sections of a bundle of modules over a
 $C^*$-algebra; and then the index takes values in the K-theory of this
 algebra. This index is the image under the Baum-Connes assembly map of a
 topological object, the K-theoretic fundamental class.

 The talk will present results of the following type:

 If $M$ has a submanifold $N$ of codimension $k$ whose Dirac operator has
 non-trivial index, what conditions imply that $M$ does not admit a metric of
 positive scalar curvature? How is this related to the Baum-Connes assembly
 map? 

 We will present previous results of Zeidler ($k=1$), Hanke-Pape-S. ($k=2$),
 Engel and new generalizations. Moreover, we will show how these results fit
 in the context of the Baum-Connes assembly maps for the manifold and the
 submanifold. 
 

Mon, 06 Jun 2016

14:15 - 15:15
C6

Well-posedness and regularizing properties of stochastic Hamilton-Jacobi equations

PAUL GASSIAT
(Université Paris Dauphine)
Abstract

We consider fully nonlinear parabolic equations of the form $du = F(t,x,u,Du,D^2 u) dt + H(x,Du) \circ dB_t,$ which can be made sense of by the Lions-Souganidis theory of stochastic viscosity solutions. I will first recall the ideas of this theory, and will discuss more recent developments (including the use of rough path theory in this context). In the second part of my talk, I will explain how in the case where $H(x,Du)=|Du|^2$, the solution $u$ may enjoy better regularity properties than the solution to the unperturbed equation, which can be measured by (a pair of) solutions to a reflected SDE. Based on joint works with P. Friz, B. Gess, P.L. Lions and P. Souganidis.

 

Mon, 06 Jun 2016

14:15 - 15:15
L4

Obstructions to positive scalar curvature via submanifolds of different codimension

Thomas Schick
(Goettingen)
Abstract

We want to discuss a collection of results around the following Question: Given a smooth compact manifold $M$ without boundary, does $M$ admit a Riemannian metric of positive scalar curvature?

We focus on the case of spin manifolds. The spin structure, together with a chosen Riemannian metric, allows to construct a specific geometric differential operator, called Dirac operator. If the metric has positive scalar curvature, then 0 is not in the spectrum of this operator; this in turn implies that a topological invariant, the index, vanishes.
 

We use a refined version, acting on sections of a bundle of modules over a $C^*$-algebra; and then the index takes values in the K-theory of this algebra. This index is the image under the Baum-Connes assembly map of a topological object, the K-theoretic fundamental class.

The talk will present results of the following type:
 
If $M$ has a submanifold $N$ of codimension $k$ whose Dirac operator has non-trivial index, what conditions imply that $M$ does not admit a metric of positive scalar curvature? How is this related to the Baum-Connes assembly map? 

We will present previous results of Zeidler ($k=1$), Hanke-Pape-S. ($k=2$), Engel and new generalizations. Moreover, we will show how these results fit in the context of the Baum-Connes assembly maps for the manifold and the submanifold. 
 

Mon, 06 Jun 2016

12:00 - 13:00
L5

Black Holes and Higher Derivative Gravity

Kellogg Stelle
(Imperial College)
Abstract
Quantum corrections to the gravitational action generically include quadratic terms in the curvature. Moreover, these terms are distinguished with respect to other corrections in that their inclusion renders the theory renormalisable. The talk will discuss the changes their inclusion make to black hole solutions and the occurrence of other spherically symmetric solutions, such as wormholes and horizonless solutions.
Fri, 03 Jun 2016

16:00 - 17:00
L1

Eigenvectors of Tensors

Bernd Sturmfels
(UC Berkeley)
Abstract

Eigenvectors of square matrices are central to linear algebra. Eigenvectors of tensors are a natural generalization. The spectral theory of tensors was pioneered by Lim and Qi around 2005. It has numerous applications, and ties in closely with optimization and dynamical systems.  We present an introduction that emphasizes algebraic and geometric aspects

Fri, 03 Jun 2016
14:15
C3

The Weak Constraint Formulation of Bayesian Inverse Problems

Sean Lim
(Oxford)
Abstract

Inverse problems arise in many applications. One could solve them by adopting a Bayesian framework, to account for uncertainty which arises from our observations. The solution of an inverse problem is given by a probability distribution. Usually, efficient methods at hand to extract information from this probability distribution involves the solution of an optimization problem, where the objective function is highly nonconvex. In this talk, we explore a reformulation of inverse problems, which helps in convexifying the objective function. We also discuss a method to sample from this probability distribution.

Fri, 03 Jun 2016

11:00 - 12:00
C2

The de Rham algebra of a point in affine space

Damian Rössler
(Oxford)
Abstract

Following the notes and an article of B. Bhatt, we shall compute the de Rham algebra of the immersion of the zero-section of affine space over Z/p^nZ.

This talk is part of the workshop on Beilinson's approach to p-adic Hodge theory.

Fri, 03 Jun 2016

10:00 - 11:00
L4

Unanticipated interaction loops involving autonomous systems

James Sutherland
(Thales Security and Consulting)
Abstract

We are entering a world where unmanned vehicles will be common. They have the potential to dramatically decrease the cost of services whilst simultaneously increasing the safety record of whole industries.

Autonomous technologies will, by their very nature, shift decision making responsibility from individual humans to technology systems. The 2010 Flash Crash showed how such systems can create rare (but not inconceivably rare) and highly destructive positive feedback loops which can severely disrupt a sector.

In the case of Unmanned Air Systems (UAS), how might similar effects obstruct the development of the Commercial UAS industry? Is it conceivable that, like the high frequency trading industry at the heart of the Flash Crash, the algorithms we provide UAS to enable autonomy could decrease the risk of small incidents whilst increasing the risk of severe accidents? And if so, what is the relationship between probability and consequence of incidents?

Fri, 03 Jun 2016
10:00
N3.12

(Strongly) quasihereditary algebras

Teresa Conde
(Oxford)
Abstract

Quasihereditary algebras are the 'finite' version of a highest weight category, and they classically occur as blocks of the category O and as Schur algebras.

They also occur as endomorphism algebras associated to modules endowed with special filtrations. The quasihereditary algebras produced in these cases are very often strongly quasihereditary (i.e. their standard modules have projective dimension at most 1).

In this talk I will define (strongly) quasihereditary algebras, give some motivation for their study, and mention some nice strongly quasihereditary algebras found in nature.

Thu, 02 Jun 2016
17:30
L6

Analytic properties of zeta functions and model theory

Jamshid Derakhshan
(Oxford)
Abstract
I will talk about meromorphic continuation of Euler products and zeta functions arising from model theory, and applications to
algebra and number theory.
Thu, 02 Jun 2016

16:00 - 17:00
C5

A hyperkähler metric on the cotangent bundle of a complex reductive group

Maxence Mayrand
(Oxford)
Abstract

Abstract: A hyperkähler manifold is a Riemannian manifold $(M,g)$ with three complex structures $I,J,K$ satisfying the quaternion relations, i.e. $I^2=J^2=K^2=IJK=-1$, and such that $(M,g)$ is Kähler with respect to each of them. I will describe a construction due to Kronheimer which gives such a structure on the cotangent bundle of any complex reductive group.