The Asymptotic Cone of a Symmetric Space is a Euclidean Building
Abstract
I will introduce Symmetric spaces via a result of Kleiner & Leeb, comparing the axioms in their definition of a Euclidean building with properties of symmetric spaces of noncompact type.
Symplectic homology of 4-dimensional Weinstein manifolds and Legendrian homology of links
Abstract
We show how to compute the symplectic homology of a 4-dimensional Weinstein manifold from a diagram of the Legendrian link which is the attaching locus of its 2-handles. The computation uses a combination of a generalization of Chekanov's description of the Legendrian homology of links in standard contact 3-space, where the ambient contact manifold is replaced by a connected sum of $S^1\times S^2$'s, and recent results on the behaviour of holomorphic curve invariants under Legendrian surgery.
14:15
Mixing, jet sharpening and angular momentum in shallow atmospheres
Axions, Inflation and the Anthropic Principle
Abstract
The QCD axion is the leading solution to the strong-CP problem, a
dark matter candidate, and a possible result of string theory
compactifications. However, for axions produced before inflation, high
symmetry-breaking scales (such as those favored in string-theoretic axion
models) are ruled out by cosmological constraints unless both the axion
misalignment angle and the inflationary Hubble scale are extremely
fine-tuned. I will discuss how attempting to accommodate a high-scale axion
in inflationary cosmology leads to a fine-tuning problem that is worse than
the strong-CP problem the axion was originally invented to solve, and how
this problem is exacerbated when additional axion-like fields from string
theory are taken into account. This problem remains unresolved by anthropic
selection arguments commonly applied to the high-scale axion scenario.
Spectral stability for solitary water waves
Abstract
I will recount progress regarding the robustness of solitary waves in
nonintegrable Hamiltonian systems such as FPU lattices, and discuss
a proof (with Shu-Ming Sun) of spectral stability of small
solitary waves for the 2D Euler equations for water of finite depth
without surface tension.
15:45
15:45
Surface quotients of hyperbolic buildings
Abstract
Bourdon's building is a negatively curved 2-complex built out of hyperbolic right-angled polygons. Its automorphism group is large (uncountable) and remarkably rich. We study, and mostly answer, the question of when there is a discrete subgroup of the automorphism group such that the quotient is a closed surface of genus g. This involves some fun elementary combinatorics, but quickly leads to open questions in group theory and number theory. This is joint work with David Futer.
14:15
Crystal Melting and Wall Crossing for Donaldson-Thomas Invariants
Abstract
14:30
Visco-elastic modelling for the generation of plate-like behaviour in the mantle.
14:15
Efficiency for the concave Order and Multivariate
Abstract
comonotonicity joint work with Carlier and Galichon Abstact This paper studies efficient risk-sharing rules for the concave dominance order. For a univariate risk, it follows from a \emph{comonotone dominance principle}, due to Landsberger and
Meilijson that efficiency is
characterized by a comonotonicity condition. The goal of the paper is to generalize the comonotone dominance principle as well as the equivalence between efficiency and comonotonicity to the multi-dimensional case. The multivariate case is more involved (in particular because there is no immediate extension of the notion of comonotonicity) and it is addressed by using techniques from convex duality and optimal transportation.
Engineering Surgery session
Abstract
17:00
Definability in valued Ore modules
Abstract
We consider valued fields with a distinguished isometry or contractive derivation, as valued modules over the Ore ring of difference operators. This amounts to study linear difference/differential
equations with respect to the distinguished isometry/derivation.
Under certain assumptions on the residue field, but in all characteristics, we obtain quantifier elimination in natural languages, and the absence of the independence property.
We will consider other operators of interest.
Modelling plant growth
Abstract
How does form emerge from cellular processes? Using cell-based mechanical models of growth, we investigated the geometry of leaf vasculature and the cellular arrangements at the shoot apex. These models incorporate turgor pressure, wall mechanical properties and cell division. In connection with experimental data, they allowed us to, on the one hand, account for characteristic geometrical property of vein junctions, and, on the other hand, speculate that growth is locally regulated.
A Preconditioned Conjugate Gradient Method for Optimal Control Problems with Control and State Constraints
Abstract
We consider saddle point problems arising as (linearized) optimality conditions in elliptic optimal control problems. The efficient solution of such systems is a core ingredient in second-order optimization algorithms. In the spirit of Bramble and Pasciak, the preconditioned systems are symmetric and positive definite with respect to a suitable scalar product. We extend previous work by Schoeberl and Zulehner and consider problems with control and state constraints. It stands out as a particular feature of this approach that an appropriate symmetric indefinite preconditioner can be constructed from standard preconditioners for those matrices which represent the inner products, such as multigrid cycles.
Numerical examples in 2D and 3D are given which illustrate the performance of the method, and limitations and open questions are addressed.
Hyperkähler Quotients and Metrics on Moduli Spaces
Abstract
A Hyperkähler manifold is a riemannian manifold carrying three complex structures which behave like quaternions such that the metric is Kähler with respect to each of them. This means in particular that the manifold is a symplectic manifold in many different ways. In analogy to the Marsden-Weinstein reduction on a symplectic manifold, there is also a quotient construction for group actions that preserve the Hyperkähler structure and admit a moment map. In fact most known (non-compact) examples of hyperkähler manifolds arise in this way from an appropriate group action on a quaternionic vector space.
In the first half of the talk I will give the definition of a hyperkähler manifold and explain the hyperkähler quotient construction. As an important application I will discuss the moduli space of solutions to the gauge-theoretic "Self-duality equations on a Riemann surface", the space of Higgs bundles, and explain how it can be viewed as a hyperkähler quotient in an infinite-dimensional setting.
11:00
Valued Fields ( Extensions of valuations, Gauss valuations, Chevalley's Theorem etc.).
17:00
The life, work, and reputation of Thomas Harriot (1560–1621)
Abstract
What do historians of mathematics do? What sort of questions do they ask? What kinds of sources do they use? This series of four informal lectures will demonstrate some of the research on history of mathematics currently being done in Oxford. The subjects range from the late Renaissance mathematician Thomas Harriot (who studied at Oriel in 1577) to the varied and rapidly developing mathematics of the seventeenth century (as seen through the eyes of Savilian Professor John Wallis, and others) to the emergence of a new kind of algebra in Paris around 1830 in the work of the twenty-year old Évariste Galois.
Each lecture will last about 40 minutes, leaving time for questions and discussion. No previous knowledge is required: the lectures are open to anyone from the department or elsewhere, from undergraduates upwards.
Various polynomial identities in matrix algebras
10:10
Multigraph limits and aging of the edge reconnecting model
Abstract
We define the edge reconnecting model, a random multigraph evolving in time. At each time step we change one endpoint of a uniformly chosen edge: the new endpoint is chosen by linear preferential attachment. We consider a sequence of edge reconnecting models where the sequence of initial multigraphs is convergent in a sense which is a natural generalization of the Lovász-Szegedy notion of convergence of dense graph sequences. We investigate how the limit objects evolve under the edge reconnecting dynamics if we rescale time properly: we give the complete characterization of the time evolution of the limiting object from its initial state up to the stationary state using the theory of exchangeable arrays, the Pólya urn model, queuing and diffusion processes. The number of parallel edges and the degrees evolve on different timescales and because of this the model exhibits “aging”.