Fri, 26 May 2023

14:00 - 15:00
L3

Modelling the viral dynamics of the SARS-CoV-2 Delta and Omicron variants in different cell types

Dr Ada Yan
(Dept of Infectious Disease Imperial College London)
Abstract

The Omicron BA.1 variant of SARS-CoV-2 was more transmissible and less severe than the preceding Delta variant, including in hosts without previous infection or vaccination.  To investigate why this was the case, we conducted in vitro replication experiments in human nasal and lung cells, then constructed and fitted ODE models of varying levels of complexity to the data, using Markov chain Monte Carlo methods.  Our results fitting a simple model suggest that the basic reproduction number and growth rate are higher for Omicron in nasal cells, and higher for Delta in lung cells. As growth in nasal cells is thought to correspond to transmissibility and growth in lung cells is thought to correspond to severity, these results are consistent with epidemiological and clinical observations.  We then fitted a more complex model, including different virus entry pathways and the immune response, to the data, to understand the mechanisms leading to higher infectivity for Omicron in nasal cells. This work paves the way for using within-host mathematical models to analyse experimental data and understand the transmission potential of future variants. 

While presenting the results of this study, I will use them to open a wider discussion on common problems in mathematical biology, such as the situations in which complex models are preferable to simpler models; when it is appropriate to fix model parameters; and how to present results which are contingent on unidentifiable parameters.

Fri, 26 May 2023

12:00 - 13:00
N3.12

Non-ordinary conjectures in Iwasawa Theory

Muhammad Manji
(University of Warwick)
Abstract

The Iwasawa main conjecture, first developed in the 1960s and later generalised to a modular forms setting, is the prediction that algebraic and analytic constructions of a p-adic L-function agree. This has applications towards the Birch—Swinnerton-Dyer conjecture and many similar problems. This was proved by Kato (’04) and Skinner—Urban (’06) for ordinary modular forms. Progress in the non-ordinary setting is much more recent, requiring tools from p-adic Hodge theory and rigid analytic geometry. I aim to give an overview of this and discuss a new approach in the setting of unitary groups where even more things go wrong.

Fri, 26 May 2023

11:45 - 13:15
N4.01

InFoMM Group Meeting

Anna Berryman, Constantin Puiu, Joe Roberts
(Mathematical Institute)
Thu, 25 May 2023
17:00
L3

Likely Intersections

Sebastian Eterović
(University of Leeds)
Abstract

The Zilber-Pink conjecture predicts that if V is a proper subvariety of an arithmetic variety S (e.g. abelian variety, Shimura variety, others) not contained in a proper special subvariety of V, then the “unlikely intersections” of V with the proper special subvarieties of S are not Zariski dense in V. In this talk I will present a strong counterpart to the Zilber-Pink conjecture, namely that under some natural conditions, likely intersections are in fact Euclidean dense in V.  This is joint work with Tom Scanlon.

Thu, 25 May 2023
16:00
L5

Balanced triple product p-adic L-functions and classical weight one forms

Luca Dall'Ava
(Università degli Studi di Milano)
Abstract

The main object of study of the talk is the balanced triple product p-adic L-function; this is a p-adic L-function associated with a triple of families of (quaternionic) modular forms. The first instances of these functions appear in the works of Darmon-Lauder-Rotger, Hsieh, and Greenberg-Seveso. They have proved to be effective tools in studying cases of the p-adic equivariant Birch & Swinnerton-Dyer conjecture. With this aim in mind, we discuss the construction of a new p-adic L-function, extending Hsieh's construction, and allowing classical weight one modular forms in the chosen families. Such improvement does not come for free, as it coincides with the increased dimension of certain Hecke-eigenspaces of quaternionic modular forms with non-Eichler level structure; we discuss how to deal with the problems arising in this more general setting. One of the key ingredients of the construction is a p-adic extension of the Jacquet-Langlands correspondence addressing these more general quaternionic modular forms. This is joint work in progress with Aleksander Horawa.

Thu, 25 May 2023
14:00
N3.12

Supersymmetric Localization

Alice Lüscher
Further Information

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 25 May 2023

14:00 - 15:00
Lecture Room 3

Balancing Inexactness in Matrix Computations

Erin Carson
(Charles University)
Abstract


On supercomputers that exist today, achieving even close to the peak performance is incredibly difficult if not impossible for many applications. Techniques designed to improve the performance of matrix computations - making computations less expensive by reorganizing an algorithm, making intentional approximations, and using lower precision - all introduce what we can generally call ``inexactness''. The questions to ask are then:

1. With all these various sources of inexactness involved, does a given algorithm still get close enough to the right answer?
2. Given a user constraint on required accuracy, how can we best exploit and balance different types of inexactness to improve performance?

Studying the combination of different sources of inexactness can thus reveal not only limitations, but also new opportunities for developing algorithms for matrix computations that are both fast and provably accurate. We present few recent results toward this goal, icluding mixed precision randomized decompositions and mixed precision sparse approximate inverse preconditioners.

Thu, 25 May 2023
12:00
L1

The Thermodynamics of Mind

Gustavo Deco
(Universitat Pompeu Fabra)
Abstract

We propose a unified theory of brain function called ‘Thermodynamics of Mind’ which provides a natural, parsimonious way to explain the underlying computational mechanisms. The theory uses tools from non-equilibrium thermodynamics to describe the hierarchical dynamics of brain states over time. Crucially, the theory combines correlative (model-free) measures with causal generative models to provide solid causal inference for the underlying brain mechanisms. The model-based framework is a powerful way to use regional neural dynamics within the hierarchical anatomical brain connectivity to understand the underlying mechanisms for shaping the temporal unfolding of whole-brain dynamics in brain states. As such this model-based framework fitted to empirical data can be exhaustively investigated to provide objectively strong causal evidence of the underlying brain mechanisms orchestrating brain states. 

Wed, 24 May 2023

13:00 - 14:00
N3.12

Mathematrix: Resilience

Abstract

This week we will be discussing the theme of resilience. Free lunch provided!

Wed, 24 May 2023

10:15 - 18:00
L3

One-Day Meeting in Combinatorics

Multiple
Abstract

The speakers are Maya Stein (University of Chile), Mathias Schacht (Hamburg), János Pach (Rényi Institute, Hungary and IST Austria), Marthe Bonamy (Bordeaux)Mehtaab Sawhney (Cambridge/MIT), and Julian Sahasrabudhe (Cambridge). Please see the event website for further details including titles, abstracts, and timings. Anyone interested is welcome to attend, and no registration is required.

Tue, 23 May 2023

16:00 - 17:00
L6

Moments of the high order derivatives of CUE characteristic polynomials

Fei Wei
(University of Oxford)
Abstract

In this talk, I will firstly give asymptotic formulas for the moments of the n-th derivative of the characteristic polynomials from the CUE. Secondly, I will talk about the connections between them and a solution of certain Painleve differential equation. This is joint work with Jonathan P. Keating.
 

Tue, 23 May 2023
15:30
C4

Multivalued Dir-Minimizing Functions

Dr Immanuel Ben Porat
((Oxford University))
Further Information

The course will serve as an introduction to the theory of multivalued Dir-minimizing functions, which can be viewed as harmonic functions which attain multiple values at each point.

Aimed at Postgraduate students interested in geometric measure theory and its link with elliptic PDEs, a solid knowledge of functional analysis and Sobolev spaces, acquaintance with variational
methods in PDEs and some basic geometric measure theory are recommended.

Sessions led by Dr Immanuel Ben Porat will take place on

09 May 2023 15:30 - 17:30 C4

16 May 2023 15:30 - 17:30 C4

23 May 2023 15:30 - 17:30 C4

30 May 2023 15:30 - 17:30 C4

Should you be interested in taking part in the course, please send an email to @email.

Abstract

COURSE_PROPOSAL (12)_1.pdf

The space of unordered tuples. The notion of differentiability and the theory of metric Sobolev in the context of multi-valued functions. Multivalued maximum principle and Holder regularity. Estimates on the Hausdorff dimension of the singular set of Dir-minimizing functions. If time permits: mass minimizing currents and their link with Dir-minimizers. 

Tue, 23 May 2023

15:00 - 16:00
L3

Uniform boundary representation of hyperbolic groups

Kevin Boucher
Abstract

After a brief introduction to subject of spherical representations of hyperbolic groups, I will present a new construction motivated by a spectral formulation of the so-called Shalom conjecture.This a joint work with Dr Jan Spakula.

Tue, 23 May 2023
14:00
C6

What we do in the shadows: mining temporal motifs from transactions on the Dark Web

Dr. Naomi Arnold
(Northeastern University London)
Abstract
Dark web marketplaces are forums where users can buy or sell illicit goods/services and transactions are typically made using cryptocurrencies. While there have been numerous coordinated shutdowns of individual markets by authorities, the ecosystem has been found to be immensely resilient. In addition, while transactions are open and visible by anyone on the blockchain, the sheer scale of the data makes monitoring beyond basic characteristics a huge effort.

In this talk, I propose the use of temporal motif counting, as a way of monitoring both the system as a whole and the users within it. Focusing on the Alphabay and Hydra dark markets, I study all the motifs formed by three sequential transactions among two to three users, finding that they can tell us something more complex than can be captured by simply degree or transaction volume. Studying motifs local to the node, I show how users form salient clusters, which is a promising route for classification or anomaly detection tasks.
Tue, 23 May 2023

14:00 - 15:00
L6

Endoscopic lifting and cohomological induction

Lucas Mason-Brown
Abstract

Let G and H be real reductive groups. To any L-homomorphism e: H^L \to G^L one can associate a map e_* from virtual representations of H to virtual representations of G. This map was predicted by Langlands and defined (in the real case) by Adams, Barbasch, and Vogan. Without further restrictions on e, this map can be very poorly behaved. A special case in which e_* exhibits especially nice behavior is the case when H is an endoscopic group. In this talk, I will introduce a more general class of L-homomorphisms that exhibit similar behavior to the endoscopic case. I will explain how this more general notion of endoscopic lifting relates to the theory of cohomological induction. I will also explain how this generalized notion of endoscopic lifting can be used to prove the unitarity of many Arthur packets. This is based on joint work with Jeffrey Adams and David Vogan.

Tue, 23 May 2023

12:00 - 13:15
L3

Construction of quantum gauge theories via stochastic quantisation

Ilya Chevyrev
(Edinburgh University)
Abstract

Recent years have seen many new ideas appearing in the solution theories of singular stochastic partial differential equations. An exciting application of SPDEs that is beginning to emerge is to the construction and analysis of quantum field theories. In this talk, I will describe how stochastic quantisation of Parisi–Wu can be used to study QFTs, especially those arising from gauge theories, the rigorous construction of which, even in low dimensions, is largely open.

 

Tue, 23 May 2023

11:00 - 12:00
L3

SDEs and rough paths on manifolds

Emilio Rossiferrucci
Abstract

I will begin by speaking about Ito SDEs on manifolds, how their meaning depends on the choice of a connection, and an example in which the Ito formulation is preferable to the more common Stratonovich one. SDEs are naturally generalised to the case of more irregular driving signals by rough differential equations (RDEs), i.e. equations driven by rough paths. I will explain how it is possible to give a coordinate-invariant definition of rough integral and rough differential equation on a manifold, even in the case of arbitrarily low regularity and when the rough path is not geometric, i.e. it does not satisfy a classical integration by parts rule. If time permits, I will end on a more recent algebraic result that makes it possible to canonically convert non-geometric RDEs to geometric ones.

Mon, 22 May 2023

17:30 - 18:30
L6

Scaling Optimal Transport for High dimensional Learning

Gabriel Peyre
(École Normale Supérieure )
Further Information

Please note a different room and that there are two pde seminars on Monday of W5 (May 22).

Abstract

Optimal transport (OT) has recently gained a lot of interest in machine learning. It is a natural tool to compare in a geometrically faithful way probability distributions. It finds applications in both supervised learning (using geometric loss functions) and unsupervised learning (to perform generative model fitting). OT is however plagued by the curse of dimensionality, since it might require a number of samples which grows exponentially with the dimension. In this talk, I will explain how to leverage entropic regularization methods to define computationally efficient loss functions, approximating OT with a better sample complexity. More information and references can be found on the website of our book "Computational Optimal Transport".

Mon, 22 May 2023
16:30
L6

Optimal mass transport and sharp Sobolev inequalities

Zoltan Balogh
(Universitat Bern)
Further Information

Please note a different room and that there are two pde seminars on Monday of W5 (May 22).

Abstract

Optimal mass transport is a versatile tool that can be used to prove various geometric and functional inequalities. In this talk we focus on the class of Sobolev inequalities.

In the first part of the talk I present the main idea of this method, based on the work of Cordero-Erausquin, Nazaret and Villani (2004).

The second part of the talk is devoted to the joint work with Ch. Gutierrez and A. Kristály about Sobolev inequalities with weights. 

Mon, 22 May 2023

16:00 - 17:00
C4

On the Hikita-Nakajima conjecture for Slodowy slices

Dmytro Matvieievskyi
(Kavli IPMU)
Abstract

Symplectic duality predicts that affine symplectic singularities come in pairs that are in a sense dual to each other. The Hikita conjecture relates the cohomology of the symplectic resolution on one side to the functions on the fixed points on the dual side.  

In a recent work with Ivan Losev and Lucas Mason-Brown, we suggested an important example of symplectic dual pairs. Namely, a Slodowy slice to a nilpotent orbit should be dual to an affinization of a certain cover of a special orbit for the Langlands dual group. In that paper, we explain that the appearance of the special unipotent central character can be seen as a manifestation of a slight generalization of the Hikita conjecture for this pair.

However, a further study shows that several things can (and do!) go wrong with the conjecture. In this talk, I will explain a modified version of the statement, recent progress towards the proof, and how special unipotent characters appear in the picture. It is based on a work in progress with Do Kien Hoang and Vasily Krylov.

Mon, 22 May 2023
16:00
C3

The modular approach for solving $x^r+y^r=z^p$ over totally real number fields

Diana Mocanu
(University of Warwick)
Abstract

We will first introduce the modular method for solving Diophantine Equations, famously used to
prove the Fermat Last Theorem. Then, we will see how to generalize it for a totally real number field $K$ and
a Fermat-type equation $Aa^p+Bb^q=Cc^r$ over $K$. We call the triple of exponents $(p,q,r)$ the 
signature of the equation. We will see various results concerning the solutions to the Fermat equation with
signatures $(r,r,p)$ (fixed $r$). This will involve image of inertia comparison and the study of certain
$S$-unit equations over $K$. If time permits, we will discuss briefly how to attack the very similar family
of signatures $(p,p,2)$ and $(p,p,3)$. 

Mon, 22 May 2023
15:30
L5

Combining the minimal-separating-set trick with simplicial volume

Hannah Alpert
Abstract

In 1983 Gromov proved the systolic inequality: if M is a closed, essential n-dimensional Riemannian manifold where every loop of length 2 is null-homotopic, then the volume of M is at least a constant depending only on n.  He also proved a version that depends on the simplicial volume of M, a topological invariant generalizing the hyperbolic volume of a closed hyperbolic manifold.  If the simplicial volume is large, then the lower bound on volume becomes proportional to the simplicial volume divided by the n-th power of its logarithm.  Nabutovsky showed in 2019 that Papasoglu's method of area-minimizing separating sets recovers the systolic inequality and improves its dependence on n.  We introduce simplicial volume to the proof, recovering the statement that the volume is at least proportional to the square root of the simplicial volume.

Mon, 22 May 2023

15:30 - 16:30
L1

Analysis of the Anderson operator

Ismael Bailleul
Abstract

The Anderson operator is a perburbation of the Laplace-Beltrami operator by a space white noise potential. I will explain how to get a short self-contained functional analysis construction of the operator and how a sharp description of its heat kernel leads to useful quantitative estimates on its eigenvalues and eigenfunctions. One can associate to Anderson operator a (doubly) random field called the Anderson Gaussian free field. The law of its (random) partition function turns out to characterize the law of the spectrum of the operator. The square of the Anderson Gaussian free field turns out to be related to a probability measure on paths built from the operator, called the polymer measure.

Mon, 22 May 2023
14:15
L4

Stability of weak Cayley fibrations

Gilles Englebert
(University of Oxford)
Abstract

The SYZ conjecture is a geometric way of understanding mirror symmetry via the existence of dual special Lagrangian fibrations on mirror Calabi-Yau manifolds. Motivated by this conjecture, it is expected that $G_2$ and $Spin(7)$-manifolds admit calibrated fibrations as well. I will explain how to construct examples of a weaker type of fibration on compact $Spin(7)$-manifolds obtained via gluing, and give a hint as to why the stronger fibrations are still elusive. The key ingredient is the stability of the weak fibration property under deformation of the ambient $Spin(7)$-structure.