Tue, 16 May 2023

12:00 - 13:15
L3

Abelian Chern-Simons theory on the lattice

Tin Sulejmanpasic
(University of Durham)
Abstract

I will discuss a formulation of an Abelian Chern-Simons theory on the lattice employing the modified Villain formalism. The theory suffers from a well-known problem of having extra zero modes in the Gaussian operator. I will argue that these zero modes are associated with a kind of subsystem symmetry which projects out almost all naive Wilson loops. The operators which survive are framed Wilson loops. These turn out to be topological charges of the associated one-form symmetry, and it has the correct topological spin and correlation functions.

Tue, 16 May 2023

11:00 - 12:00
L3

DLA and related models, part II

Dmitry Belyaev
Abstract

This will be a continuation of the talk from last week (9 May). 

Mon, 15 May 2023
16:30
L4

Lord Rayleigh’s conjecture for clamped plates in curved spaces

Alexandru Kristaly
(Óbuda University)
Abstract

The talk is focused on the clamped plate problem, initially formulated by Lord Rayleigh in 1877, and solved by M. Ashbaugh & R. Benguria (Duke Math. J., 1995) and N. Nadirashvili (Arch. Ration. Mech. Anal., 1995) in 2 and 3 dimensional euclidean spaces. We consider the same problem on both negatively and positively curved spaces, and provide various answers depending on the curvature, dimension and the width/size of the clamped plate.

Mon, 15 May 2023
16:00
C3

Ranges of polynomials control degree ranks of Green and Tao over finite prime fields

Thomas Karam
(University of Oxford)
Abstract

Let $p$ be a prime, let $1 \le t < d < p$ be integers, and let $S$ be a non-empty subset of $\mathbb{F}_p$ (which may be thought of as being $\{0,1\}$). We will establish that if a polynomial $P:\mathbb{F}_p^n \to \mathbb{F}_p$ with degree $d$ is such that the image $P(S^n)$ does not contain the full image $A(\mathbb{F}_p)$ of any non-constant polynomial $A: \mathbb{F}_p \to \mathbb{F}_p$ with degree at most $t$, then $P$ coincides on $S^n$ with a polynomial $Q$ that in particular has bounded degree-$\lfloor d/(t+1) \rfloor$-rank in the sense of Green and Tao, and has degree at most $d$. Likewise, we will prove that if the assumption holds even for $t=d$ then $P$ coincides on $S^n$ with a polynomial determined by a bounded number of coordinates and with degree at most $d$.

Mon, 15 May 2023
15:30
L5

Virtual classes of character stacks

Marton Hablicsek
Abstract

Questions about the geometry of G-representation varieties on a manifold M have attracted many researchers as the theory combines the algebraic geometry of G, the topology of M, and the group theory and representation theory of G and the fundamental group of M. In this talk, I will explain how to construct a Topological Quantum Field Theory to compute virtual classes of character stacks (G-representation varieties equipped with the adjoint G-action) in the Grothendieck ring of stacks. I will also show a few features of the construction (for instance, how to obtain arithmetic information) focusing on a couple of simple examples.
The work is joint with Jesse Vogel and Ángel González-Prieto.  

Mon, 15 May 2023

15:30 - 16:30
L1

Mean-field Optimization regularized by Fisher Information

Julien Claisse
Abstract

Recently there is a rising interest in the research of mean-field optimization, in particular because of its role in analyzing the training of neural networks. In this talk, by adding the Fisher Information (in other word, the Schrodinger kinetic energy) as the regularizer, we relate the mean-field optimization problem with a so-called mean field Schrodinger (MFS) dynamics. We develop a free energy method to show that the marginal distributions of the MFS dynamics converge exponentially quickly towards the unique minimizer of the regularized optimization problem. We shall see that the MFS is a gradient flow on the probability measure space with respect to the relative entropy. Finally we propose a Monte Carlo method to sample the marginal distributions of the MFS dynamics. This is a joint work with Giovanni Conforti, Zhenjie Ren and Songbo Wang.

Mon, 15 May 2023
14:15
L4

Degenerating conic Kähler-Einstein metrics

Henri Guenancia
(CNRS / Institut de Mathématiques de Toulouse)
Abstract

I will discuss a joint work with Olivier Biquard about degenerating conic Kähler-Einstein metrics by letting the cone angle go to zero. In the case where one is given a smooth anticanonical divisor $D$ in a Fano manifold $X$, I will explain how the complete Ricci flat Tian-Yau metric on $X \smallsetminus D$ appears as rescaled limit of such conic KE metrics. 

Mon, 15 May 2023
14:00
C6

Ext in functor categories and stable cohomology of Aut(F_n) (Arone)

Greg Arone
Abstract

 

We present a homotopy-theoretic method for calculating Ext groups between polynomial functors from the category of (finitely generated, free) groups to abelian groups. It enables us to substantially extend the range of what can be calculated. In particular, we can calculate torsion in the Ext groups, about which very little has been known. We will discuss some applications to the stable cohomology of Aut(F_n), based on a theorem of Djament.   

 

 

Mon, 15 May 2023
13:00
L1

From Poisson’s Ratio to Cosmology

Chris Herzog
(KCL )
Abstract

I will discuss how to place conformal boundary conditions on free higher derivative theories of scalars and spinors as well as the zoo of boundary renormalization group flows that connect the different boundary conditions.  Historically, there are connections to Poisson’s ratio and classical equations governing the bending of thin steel plates.  As these higher derivative theories are often invoked in the context of cosmology, there may be cosmological applications for the boundary conditions discussed here.
 

Fri, 12 May 2023
16:00
L1

Departmental Colloquium: Liliana Borcea

Liliana Borcea, Peter Field Collegiate Professor of Mathematics
(University of Michigan)
Further Information

Liliana Borcea is the Peter Field Collegiate Professor of Mathematics at the University of Michigan. Her research interests are in scientific computing and applied mathematics, including the scattering and transport of electromagnetic waves.

Abstract

Title: When data driven reduced order modelling meets full waveform inversion

Abstract:

This talk is concerned with the following inverse problem for the wave equation: Determine the variable wave speed from data gathered by a collection of sensors, which emit probing signals and measure the generated backscattered waves. Inverse backscattering is an interdisciplinary field driven by applications in geophysical exploration, radar imaging, non-destructive evaluation of materials, etc. There are two types of methods:

(1) Qualitative (imaging) methods, which address the simpler problem of locating reflective structures in a known host medium. 

(2) Quantitative methods, also known as velocity estimation. 

Typically, velocity estimation is  formulated as a PDE constrained optimization, where the data are fit in the least squares sense by the wave computed at the search wave speed. The increase in computing power has lead to growing interest in this approach, but there is a fundamental impediment, which manifests especially for high frequency data: The objective function is not convex and has numerous local minima even in the absence of noise.

The main goal of the talk is to introduce a novel approach to velocity estimation, based on a reduced order model (ROM) of the wave operator. The ROM is called data driven because it is obtained from the measurements made at the sensors. The mapping between these measurements and the ROM is nonlinear, and yet the ROM can be computed efficiently using methods from numerical linear algebra. More importantly, the ROM can be used to define a better objective function for velocity estimation, so that gradient based optimization can succeed even for a poor initial guess.

 

Fri, 12 May 2023

15:00 - 16:00
Lecture room 5

TBC

Abhishek Rathod
Abstract

TBC

Fri, 12 May 2023

12:00 - 13:00
N3.12

Mod p Langlands for GL2

Martin Ortiz
(LSGNT)
Abstract

The mod p Langlands program is an attempt to relate mod p Galois representations of a local field to mod p representations of the p-adic points of a reductive group. This is inspired by the classical local Langlands (l-adic coefficients) and it is partially a stepping stone towards the p-adic Langlands (p-adic coefficients). I will explain this for GL2/Qp, where one can explicitly describe both sides, and I will relate it to congruences between modular forms. 

Thu, 11 May 2023
17:00
L3

Quasiminimality of Complex Powers

Francesco Gallinaro
(University of Freiburg)
Abstract

A conjecture due to Zilber predicts that the complex exponential field is quasiminimal: that is, that all subsets of the complex numbers that are definable in the language of rings expanded by a symbol for the complex exponential function are countable or cocountable.
Zilber showed that this conjecture would follow from Schanuel's Conjecture and an existential closedness type property asserting that certain systems of exponential-polynomial equations can be solved in the complex numbers; later on, Bays and Kirby were able to remove the dependence on Schanuel's Conjecture, shifting all the focus to the existence of solutions. In this talk, I will discuss recent work about the quasiminimality of a reduct of the complex exponential field, that is, the complex numbers expanded by multivalued power functions. This is joint work with Jonathan Kirby.

Thu, 11 May 2023
16:00
L5

Parity of ranks of abelian surfaces

Celine Maistret
(University of Bristol)
Abstract
Let K be a number field and A/K an abelian surface. By the Mordell-Weil theorem, the group of K-rational points on A is finitely generated and as for elliptic curves, its rank is predicted by the Birch and Swinnerton-Dyer conjecture. A basic consequence of this conjecture is the parity conjecture: the sign of the functional equation of the L-series determines the parity of the rank of A/K.
Assuming finiteness of the Shafarevich-Tate group, we prove the parity conjecture for principally polarized abelian surfaces under suitable local constraints. Using a similar approach, we show that for two elliptic curves E_1 and E_2 over K with isomorphic 2-torsion, the parity conjecture is true for E_1 if and only if it is true for E_2.
In both cases, we prove analogous unconditional results for Selmer groups.
Thu, 11 May 2023

16:00 - 17:00
L6

Stability and approximation of nonlinear filters

Eliana Fausti
Abstract

Nonlinear filtering is a central mathematical tool in understanding how we process information. Unfortunately, the equations involved are often high dimensional, and therefore, in practical applications, approximate filters are often employed in place of the optimal filter. The error introduced by using these approximations is generally poorly understood. In this talk we will see how, in the case where the underlying process is a continuous-time, finite-state Markov Chain, results on the stability of filters can be strengthened to yield bounds for the error between the optimal filter and a general approximate filter.  We will then consider the 'projection filter', a low dimensional approximation of the filtering equation originally due to D. Brigo and collaborators, and show that its error is indeed well-controlled. The talk is based on joint work with Sam Cohen.

Thu, 11 May 2023

14:00 - 15:00
Lecture Room 3

A coordinate descent algorithm on the Stiefel manifold for deep neural network training

Estelle Massart
(UC Louvain)
Abstract

We propose to use stochastic Riemannian coordinate descent on the Stiefel manifold for deep neural network training. The algorithm rotates successively two columns of the matrix, an operation that can be efficiently implemented as a multiplication by a Givens matrix. In the case when the coordinate is selected uniformly at random at each iteration, we prove the convergence of the proposed algorithm under standard assumptions on the loss function, stepsize and minibatch noise. Experiments on benchmark deep neural network training problems are presented to demonstrate the effectiveness of the proposed algorithm.

Thu, 11 May 2023

12:00 - 13:00
L1

Bifurcations leading to oscillation in small chemical reaction networks

Murad Banaji
(OCIAM)
Abstract
Which systems of chemical reactions permit oscillation? The study of chemical oscillations has a long history, but we are still far from any structural characterisation of oscillatory reaction networks. I'll summarise recent work on identifying Andronov-Hopf and Bautin bifurcations, leading to oscillation and even multiple nondegenerate periodic orbits, in bimolecular mass action networks. In fact, a mixture of theory and computational algebra allows us to fully enumerate networks of minimal size admitting these bifurcations, including checking nondegeneracy and transversality conditions across the whole parameter space. We find that bifurcations leading to (stable) oscillation in small networks are not quite as rare as often believed. The results can be used alongside previous theory on "inheritance" to identify larger oscillatory networks via examination of their subnetworks. This is joint work with Balázs Boros.
Wed, 10 May 2023
16:00
L6

Vanishing of group cohomology, Kazhdan’s Property (T), and computer proofs

Piotr Mizerka
(Polish Academy of Sciences)
Abstract

We will look at the vanishing of group cohomology from the perspective of Kazhdan’s property (T). We will investigate an analogue of this property for any degree, introduced by U. Bader and P. W. Nowak in 2020 and describe a method of proving these properties with computers.

Wed, 10 May 2023

13:00 - 14:00
L6

Mathematrix x Mirzakhani : Short Talks and Q&A with Female PhD students/Postdocs

Abstract

Female PhD students and Postdocs will be giving short talks about their research. This will be followed by a Q&A and a chance to mingle with the speakers over lunch.

Speakers:

  • Rhiannon Savage, DPhil Student in Algebra and Geometry
  • Shanshan Hua, DPhil Student in Functional Analysis
  • Silvia Butti, Postdoc in Theoretical Computer Science
  • Anna Berryman, DPhil Student in OCIAM (Oxford Centre for Industrial and Applied Mathematics)
  • Carmen Jorge Diaz, DPhil Student in Mathematical Physics
Tue, 09 May 2023

16:00 - 17:00
L6

On the asymptotic analysis of the Calogero-Painlevé systems and the Tracy-Widom$_\beta$ distribution for $\beta$=6

Alexander Its
(IUPUI)
Abstract

The Calogero-Painlevé systems were introduced in 2001 by K. Takasaki as a natural generalization of the classical Painlevé equations to the case of the several Painlevé “particles” coupled via the Calogero type interactions. In 2014, I. Rumanov discovered a remarkable fact that a particular case of the Calogero– Painlevé II equation describes the Tracy-Widom distribution function for the general $\beta$-ensembles with the even values of parameter $\beta$. in 2017 work of M. Bertola, M. Cafasso , and V. Rubtsov, it was proven that all Calogero-Painlevé systems are Lax integrable, and hence their solutions admit a Riemann-Hilbert representation. This important observation has opened the door to rigorous asymptotic analysis of the Calogero-Painlevé equations which in turn yields the possibility of rigorous evaluation of the asymptotic behavior of the Tracy-Widom distributions for the values of $\beta$ beyond the classical $\beta =1, 2, 4$. In the talk these recent developments will be outlined with a special focus on the Calogero-Painlevé system corresponding to $\beta = 6$. This is a joint work with Andrei Prokhorov.

Tue, 09 May 2023

16:00 - 17:00
C1

Wreath-like product groups and rigidity of their von Neumann algebras

Adrian Ioana
(UC San Diego)
Abstract

Wreath-like products are a new class of groups, which are close relatives of the classical wreath products. Examples of wreath-like product groups arise from every non-elementary hyperbolic groups by taking suitable quotients. As a consequence, unlike classical wreath products, many wreath-like products have Kazhdan's property (T). 

I will present several rigidity results for von Neumann algebras of wreath-like product groups. We show that any group G in a natural family of wreath-like products with property (T) is W*-superrigid: the group von Neumann algebra L(G) remembers the isomorphism class of G. This provides the first examples of W*-superrigid groups with property (T). For a wider class wreath-like products with property (T), we show that any isomorphism of their group von Neumann algebras arises from an isomorphism of the groups. As an application, we prove that any countable group can be realized as the outer automorphism group of L(G), for an icc property (T) group G. These results are joint with Ionut Chifan, Denis Osin and Bin Sun.  

Time permitting, I will mention an additional application of wreath-like products obtained in joint work with Ionut Chifan and Daniel Drimbe, and showing that any separable II_1 factor is contained in one with property (T). This provides an operator algebraic counterpart of the group theoretic fact that every countable group is contained in one with property (T).

Tue, 09 May 2023
15:30
C4

Multivalued Dir-Minimizing Functions

Dr Immanuel Ben Porat
(University of Oxford)
Further Information

The course will serve as an introduction to the theory of multivalued Dir-minimizing functions, which can be viewed as harmonic functions which attain multiple values at each point.

Aimed at Postgraduate students interested in geometric measure theory and its link with elliptic PDEs, a solid knowledge of functional analysis and Sobolev spaces, acquaintance with variational
methods in PDEs, and some basic geometric measure theory are recommended.

Sessions led by  Dr Immanuel Ben Porat will take place on

09 May 2023 15:30 - 17:30 C4

16 May 2023 15:30 - 17:30 C4

23 May 2023 15:30 - 17:30 C4

30 May 2023 15:30 - 17:30 C4

Should you be interested in taking part in the course, please send an email to @email.

Abstract

COURSE_PROPOSAL (12).pdf

The space of unordered tuples. The notion of differentiability and the theory of metric Sobolev in the context of multi-valued functions. Multivalued maximum principle and Holder regularity. Estimates on the Hausdorff dimension of the singular set of Dir-minimizing functions. If time permits: mass minimizing currents and their link with Dir-minimizers. 

Tue, 09 May 2023

15:00 - 16:00
L3

Why I wish we knew more about ribbon groups

Stefan Friedl
Abstract

To a group theorist ribbon groups look like knot groups, except  that we know everything about knot groups and next to nothing about ribbon groups.

I will talk about an old paper of mine with Peter Teichner where several questions on ribbon groups naturally arise.