16:00
(Joint work with Kartik Prasanna)
Siegel modular forms are higher-dimensional analogues of modular forms. While each rational elliptic curve corresponds to a single holomorphic modular form, each abelian surface is expected to correspond to a pair of Siegel modular forms: a holomorphic and a generic one. We propose a conjecture that explains the appearance of these two forms (in the cohomology of vector bundles on Siegel modular threefolds) in terms of certain higher algebraic cycles on the self-product of the abelian surface. We then prove three results:
(1) The conjecture is implied by Beilinson's conjecture on special values of L-functions. Amongst others, this uses a recent analytic result of Radzwill-Yang about non-vanishing of twists of L-functions for GL(4).
(2) The conjecture holds for abelian surfaces associated with elliptic curves over real quadratic fields.
(3) The conjecture implies a conjecture of Prasanna-Venkatesh for abelian surfaces associated with elliptic curves over imaginary quadratic fields.