17:00
15:45
Exponents of Growth for SPDEs
Abstract
We discuss estimating the growth exponents for positive solutions to the
random parabolic Anderson's model with small parameter k. We show that
behaviour for the case where the spatial variable is continuous differs
markedly from that for the discrete case.
15:30
14:15
Degenerate periodic homogenization
Abstract
The probabilistic approach to homogenization can be adapted to fully
degenerate situations, where irreducibility is insured from a Doeblin type
condition. Using recent results on weak sense Poisson equations in a
similar framework, obtained jointly with A. Veretennikov, together with a
regularization procedure, we prove the homogenization result. A similar
approach can also handle degenerate random homogenization.
12:00
On Witten's Perturbative Gauge Theory as a string Theory in Twistor Space II
14:30
14:15
16:15
The dilatation operator in N=4 Super Yang-Mills and pp-wave string interactions
Boundary concentrated FEM
Abstract
It is known for elliptic problems with smooth coefficients
that the solution is smooth in the interior of the domain;
low regularity is only possible near the boundary.
The $hp$-version of the FEM allows us to exploit this
property if we use meshes where the element size grows
porportionally to the element's distance to the boundary
and the approximation order is suitably linked to the
element size. In this way most degrees of freedom are
concentrated near the boundary.
\\
In this talk, we will discuss convergence and complexity
issues of the boundary concentrated FEM. We will show
that it is comparable to the classical boundary element
method (BEM) in that it leads to the same convergence rate
(error versus degrees of freedom). Additionally, it
generalizes the classical FEM since it does not require
explicit knowledge of the fundamental solution so that
it is also applicable to problems with (smooth) variable
coefficients.
12:00
17:00
Metric projections in spaces of continuous functions: from Chebyshev and Haar to the present
17:00
Bounds for the orders of the finite subgroups of a reductive group over a given field
15:45
On the exit and ergodicity of reflected Levy processes
Abstract
Consider a spectrally one-sided Levy process X and reflect it at
its past infimum I. Call this process Y. We determine the law of the
first crossing time of Y of a positive level a in terms of its
'scale' functions. Next we study the exponential decay of the
transition probabilities of Y killed upon leaving [0,a]. Restricting
ourselves to the case where X has absolutely continuous transition
probabilities, we also find the quasi-stationary distribution of
this killed process. We construct then the process Y confined in
[0,a] and prove some properties of this process.
15:30