Seminars
16:00
Capacity for branching random walks and percolation
Abstract
The capacity of a set is a classical notion in potential theory and it is a measure of the size of a set as seen by a random walk or Brownian motion. Recently Zhu defined the notion of branching capacity as the analogue of capacity in the context of a branching random walk. In this talk I will describe joint work with Amine Asselah and Bruno Schapira where we introduce a notion of capacity of a set for critical bond percolation and I will explain how it shares similar properties as in the case of branching random walks.
15:00
The distribution of zeroes of modular forms
Abstract
I will discuss old and new results about the distribution of zeros of modular forms, and relation to Quantum Unique Ergodicity. It is known that a modular form of weight k has about k/12 zeros in the fundamental domain . A classical question in the analytic theory of modular forms is “can we locate the zeros of a distinguished family of modular forms?”. In 1970, F. Rankin and Swinnerton-Dyer proved that the zeros of the Eisenstein series all lie on the circular part of the boundary of the fundamental domain. In the beginning of this century, I discovered that for cuspidal Hecke eigenforms, the picture is very different - the zeros are not localized, and in fact become uniformly distributed in the fundamental domain. Very recently, we have investigated other families of modular forms, such as the Miller basis (ZR 2024, Roei Raveh 2025, Adi Zilka 2026), Poincare series (RA Rankin 1982, Noam Kimmel 2025) and theta functions (Roei Raveh 2026), finding a variety of possible distributions of the zeroes.
Joint seminar with Number Theory.
16:00
Graph and Chaos Theories Combined to Address Scrambling of Quantum Information (with Arkady Kurnosov and Sven Gnutzmann)
Abstract
Given a quantum Hamiltonian, represented as an $N \times N$ Hermitian matrix $H$, we derive an expression for the largest Lyapunov exponent of the classical trajectories in the phase space appropriate for the dynamics induced by $H$. To this end we associate to $H$ a graph with $N$ vertices and derive a quantum map on functions defined on the directed edges of the graph. Using the semiclassical approach in the reverse direction we obtain the corresponding classical evolution (Liouvillian) operator. Using ergodic theory methods (Sinai, Ruelle, Bowen, Pollicott\ldots) we obtain closed expressions for the Lyapunov exponent, as well as for its variance. Applications for random matrix models will be presented.